
393
10.5

A NEW APPROACH TO THE FUNCTIONAL
DESIGN OF A DIGITAL COMPUTER

R. S. Barton
Computer Consultant
Altadena, California

Summary

The present methods of determining the func­
tional design of computers are critically reviewed
and a new approach proposed. This is illustrated
by explaining, in abstracted form, part of the con­
trol organization of a new and different machine
based, in part, on the ALGOL 60 language.*• The
concepts of expression and procedure lead directly
to use of a Polish string program. A new arrange­
ment of control registers resul ts , which provides
for automatic allocation of temporary storage within
expressions and procedures, and a generalized sub­
routine linkage.

The simplicity and power of these notions sug­
gests that there is much room for improvement in
present machines and that more attention should be
given to control functions in new designs .

Introduction

The ideas presented arise from the conviction
that for a true general purpose digital computer both
coding and operation should be fully automated.
Higher level programming languages , such as ALGOL,
should be employed to the practical exclusion of
machine language; questions of efficiency of object
program and translation process ought not to arise
if the machine has been properly designed. Opera­
tion should be under the control of the machine i t­
self, in a fuller sense than is typical in current
practice. The functions of scheduling, segmenta­
tion of programs for multi-level storage, and control
of input - output operations should be handled by a
general operational program.

This new approach.will be illustrated after r e ­
viewing the customary methods of machine design.

The Special Purpose Machine

In simple and well defined applications, the
design engineer may dispense entirely with program­
ming assistance and the program may be entirely ,
or in large part, in the hardware. If the processing
required is complex, programmers are invited to a s ­
sist the engineers. There will be a period of trading-
off programmed and component logic, but the result­
ing machine will tend to resemble the conventional
general purpose computer.

The Engineers' General Purpose Machine

In the design of machines to meet competition,
the utilization of new components is likely to be of
vital concern to the designers. While requiring a
complete new set of programs, the new product se l ­
dom shows more than minor variations of the tradi­
tional design. Its new features originate with both
programmers and logical designers, but those ideas
which are contributed by the programmers stem usu­
ally from applications experience with previous
machines rather than from systematic theory. The
logical designer has the lastword and is most likely
to accept ideas which require a minimum of new
design.

The Programmers' General Purpose Machine

It seems to be the case that as yet no machine's
"design has been significantly effected by persons
experienced in the development of automatic program­
ming systems. Programming still must be imposed
upon designs that have been determined by market­
ing pressures and tradition. It must be admitted
that the programmers of the last decade have been
poorly prepared to make the kind of contribution that
should be expected. The art of programming has de­
veloped in a helter-skelter manner, leaving behind
little of value. There is almost no theory and little
standard methodology. The logical designers have
a large body of switching theory as a basis for their
work and have, consequently, done better.

The Simultaneous Design of Computers
and Programming Systems

Rather than hope for a new spirit of cooperation
among disparate product planning, engineering, and
programming departments, a single small organiza­
tion is needed for each product conception. This
would be comprised of three kinds of people respon­
sible for aspects of system model, program design,
and logical design.

As an example, for a computer to process appli­
cations expressible in the ALGOL 60 language, the
system model group would interpret the language ,
specify a hardware representation and necessary
language supplements, define speed or cost objec­
tives , and the "use image" the machine is to present.
They would have responsibility for ensuring proper
interpretation of the model by both programmers and
logical designers.

The program designers would have background
experience in the construction of translators and
some knowledge of logical design. They will con­
sider necessary reductions in the source language
and translation techniques to enable efficient object
time interpretation by hardware.

The logical designers would be oriented in cur­
rent programming practice and become familiar with
the source programming language to be used. Their
task is to produce designs to handle the reduced
languages.

Concepts for the Design

Some simple ideas are now presented that arise
quite naturally from using the ALGOL 60 language as
a model. These ideas have actually entered into
the design of a new Burroughs Information Processing
System, For purposes of exposition, they will be
considered out of the context of the actual machine,
and liberties will be taken to avoid complications
which are not germane to the subject.

Polish String Program

The Polish notation was invented by the logician
Lukasiewicz for use in the propositional calculus.
It has the advantage that rules of operator prece­
dence and signs of grouping are not required. At
least two logical machines have been built which
use it as a source language. The first of these was
the Burroughs Truth Function Evaluator^. More re ­
cently, Bauer described a similar logical device ̂
and hinted of remarkable results which were d is ­
cussed in another p a p e r 4 . During the past few
years , numerous persons have "discovered" the ex­
tension of this notation to arithmetic expressions
and found it useful as an intermediate language in
designing algebraic translators.

Any expression, as defined by ALGOL 60, can
be simply translated into Polish form, and this can
be the basis of an efficient machine language to be
used in place of the customary single or multiple-
address command formats. Methods for doing this
are well known and familiarity with an algorithm is
assumed. While it would be q"uite feasible to con­
struct a machine to directly interpret ALGOL expres­
sions having suitably restricted identifiers, it was
decided, in view of the simplicity of the transforma­
tion, to use the Polish form. At this point, it is
important to stress that programs need never be
written in Polish form; and no lower level assembly-
type language is required.

This form provides a machine language with many
desirable properties. Programs consist of a string
of elements which correspond to identifiers, l i terals,
or operators. All the operators defined in ALGOL60

can be included. Using the stack construct, next
described, there is no need for store and fetch com­
mands such as are normally associated with the
temporary storage of intermediate quantities in the
evaluation of expressions. More important, there-
suiting program is in a better form for the applica­
tion of procedures to improve program efficiency than
is the case with the usual command languages.

The Stack Construct

Assume that the elements of the string are exa­
mined from left to right so that operators need not
be deferred. Normally, for unary and binary opera­
tors , the transformation to Polish form would ensure
(excepting in the case of procedures) that at most
two operands would have to be fetched before each
execution.

To mechanize the Polish string program, a spe­
cial address-length register called the stack counter
is provided to hold the most current cell address in
a vector of temporary storage cells referred to as the.
stack. Two word-length arithmetic registers-hold
the most recently fetched or computed operands .
Associated with each of the latter is an occupancy
toggle for indicating whether or not that register
contains an operand.

The action of the stack is defined in Table I .
The following notation applies: S, A, B, TA, Tg
represent the contents of the stack counter , arith­
metic registers, and occupancy toggles. X is an
operand. © and © are unary and binary operators.
S* signifies the contents of the cell addressed by
the contents of S.

Now, while the case of stack operation, which
is presented is somewhat simplified, it does show
how a Polish string program can be mechanized. The
occurrences of operators with TA = TB = 0 is actually
abnormal, but are included to allow continuation in
the event that the evaluation of an expression is
interrupted. The state T& = 1 / Tg = 0 is unstable.

It is worth noting that upon completion of the
evaluation of a well-formed expression we have
TA = 0, Tg = I , with the value of S upon completion
equal to its initial value. This offers a possibility
for checking in the hardware which does not exist in
such a simple form for the usual command language.

In the event that the reader does not happen to
be familiar with the Lukasiewicz notation, he may
find it useful to trace the operation of the stack for
the program XY + VW/U + x Z + which corresponds
to the expression 0C + Y) x (U + V/W) + Z.

Subroutines and ALGOL Procedures

To realize additional important advantages from
this program format , we extend these notions to
handle n-ary operators or n-place functions that are
defined by sub - programs. The important case of
call - by - name is deferred. Call-by-value only is
discussed. Declarations of functions will cause
subroutines to be generated and extensions of the
operator set to be defined. Similarly, it is assumed
that for each array one or more storage - mapping
functions have been defined and that , corresponding
to each, a subroutine has been created from the ar­
ray declaration which will have access to informa -
tion on bounds of indices and the base address of
the array. Such subroutines will also be called by
extensions of the operator set . The program corres­
ponding to the array element or function call will
then consist of an ordered set of expressions repre­
senting the indices or arguments. The values of
these are entered into the stack. When the opera­
tor corresponding to that subroutine is encountered,
linkage automatically resul t s .

Subroutine Control Using the Stack

It is now necessary to place the contents of
registers A and B (or B if A is empty) into the stack
since the subroutine to be executed will generally
require these registers. Furthermore, the contents
of the control counter, C, must be saved to enable
return from the subroutine. This return can be saved
in the stack and the position of this address recorded
in another address-length register designated F. To
afford a link to the return for a possible higher level
subroutine, the former contents of F are retained in
the cell with C. Finally, the subroutine entry ad­
dress specified by the extension operator is entered
into C and linkage to the subroutine is complete.

Within the subroutine, the parameters are ad­
dressed minus relative to F in reverse order. Tem­
porary storage is allocated for the subroutine by
advancing S corresponding to the number of cells
needed. These cells can then be addressed plus
relative to F. It will al'so be useful to store con­
stants used by the subroutine ahead of its entry and
address them minus relative to C.

Upon exit, the resulting value is left in B, the
contents of S are replaced by F, and for the cell then
addressed by S , the C-part will go to C and the F -
part to F. Finally, S is reduced by n - 1. This auto­
matic linkage construct enables the use of subrou­
tines in depth and a subroutine may call itself.

Denoting the F and C parts of S* by S*p and
S*Q , respectively, the location of the subroutine by
P, and other notation as previously defined, the ac­
tion upon entry and exit is displayed in Table II.

395
10.5

Let it now be assumed that the execution of a
scanned program element is delayed until the follow­
ing syllable has been interpreted. Operators can be
defined which force the preceding syllable to be a
call-by-name. Each word in the stack has a control
bit that distinguishes between values and names. v

The address referenced by the element preceding the
call-by-name operator then is entered into the stack
and the control bit for that cell set to indicate a
name. If an operator is encountered, followed by
the call-by-name operator, the operator (or the lo­
cation of the subroutine which effects execution of
an extended operator) goes into the stack and the
control bit is se t . Within a subroutine, any refer­
ence to this stack cell that is not followed by a call-
by-name operator will cause execution. If, other­
wise , the reference to the cell is again followed by
a call-by-name operator, the cell contents are co­
pied into the new stack level. A similar action re­
sults whenever a parameter of one subroutine is used
in a lower level subroutine.

Other Consequences of the Design

Some of the key aspects of the logical organiza­
tion of the machine have been introduced in a gradual
fashion. While not all of the consequences of the
model which have been developed can be presented
in this paper, a few concluding remarks may be of
value.

Change of sequence is accomplished by one of
two means: jumps relative to C of conditional or
unconditional type, or via a switching table of en­
tries corresponding to labeled program segments.
The conditional jumps examine the truth value in the
stack produced by evaluation of a Boolean expres -
sion, and then cause it to be erased. Fbr ease of
segmentation and effective use of a random-access
secondary storage device, we make program invariant
with respect to its position in storage. Correspond­
ing to each declaration of array, switch, or proce­
dure will be a " locator " word which is assigned in
a table. Program references are then made to these
words to obtain the location of the corresponding pro­
gram. These words contain other information which
isit i l izedin multi-programming and automatic seg­
mentation control.

"Locator" words also correspond to labeled pro­
gram segments and input-output control information.
The latter are grouped for scanning by a universal
input-output control program which assigns I/O chan­
nels . The main program and I/O control program
communicate via a status bit in these words.

Character and bit manipulation constructs for
the machine are also departures from familiar prac­
tice , but arise from different considerations and will
not be discussed here.

396

10.5

Conclusion References

It i s hoped tha t a c a s e has been made for a way
to introduce some new ideas into a field where enor ­
mous amounts of t echn ica l ta lent are spent in d e ­
signing the hardware and programs for a large number
of very similar m a c h i n e s . Most of t h e s e are "general
p u r p o s e . " Much of the effort in developing t h e s e
machines could bet ter be spent in designing some
useful " spec i a l purpose" computers . An ALGOL ma­
chine would fit into the lat ter ca tegory . With a u t o ­
mated logical des ign and fabrication in the imme­
d ia te fu ture , any number of t h e s e useful spec ia l
purpose machines can be env i saged .

This paper i s based on work sponsored by the
Burroughs Corporat ion,

1 . Naur , P . (Editor): Report on t he Algorithmic
Language ALGOL 6 0 , Comm. Assn . Comp. M a c h . 3 ,
N o . 5 (1960), 299-314 .

2 . B u r k s , A . W . , W a r r e n , D.W., Wright , J . B. :
An Analysis of a Logical Machine Using P a r e n t h e s e s -
Free Nota t ion , Math . Tables Aids Comp. 9 (1954) ,
5 3 - 5 7 .

3 . Bauer, F . L . : The Formula-Controlled Logi­
cal Computer " S t a n i s l a u s , " Ma th . Comp. 14 , N o . 69
(1960), 6 4 - 6 7 .

4 . Samelson , K. and Bauer, F . L . : Sequent ia l
Formula Trans la t ion , Comm. Assn . Comp. M a c h . 3 ,
No . 2 (I960) , 7 6 - 8 3 .

T A = T B = 0

TA = 0

TB = 1

TA « T B = 1

1 .
2 .

1 .

1 .
2 .
3 .
4 .

OPERAND

X—»A, T A = 1
A—»B, TB = 1 , T A = 0

X—»A, T A = 1

S + l—>S
B—*S*
A - * B
X—>A

UNARY OPERATOR

1 . S * - » B , TB = 1
2 . S - l — » S
3 . B 9 - * B

1 . B0—»B

1 . AS—»A

1 .
2 .
3 .
4 .
5 .
6 .

3 .
4 .
5 .
6 .

6 .

BINARY OPERATOR

S * - » B , TB = 1
S - 1 - > S
B - * A , TB = 0 , T A = 1
S * - * B , TB = 1
S - 1 - » S
AB©—»B, T A = 0

B—»A, TB = 0 , 1A= 1
S*—*B, T B = 1
S - 1 - * S
AB@—»B, % = 0

AB©—>B, TA = 0

TABLE I

ENTRY EXIT

TA = TB - 0

T A - 0
TB = 1

TA = TB = 1

6 . S + I—>S
7 . F - » 3 * p , C - * S * C

8 . S - * F
9 . P - » C

4 . S + I — » S
5 . B — » S * , T B = 0

S teps 6 through 9

1 . S + 1 - * S
2 . B—>S*
3 . A—>-B, T A = 0
4 . S + I—»S
5 . B—>.S*,TB = 0

S teps 6 through 9

(Normal for procedure
wi thout value)

1 . F—»S
2 . S * F - * F , S * C - * C
3 . S - n - I — » S

(Normal for p rocedure
wi th va lue)

(Same a s above)

(Improper)

TABLE II

