Tricks for Capacitors
Primarily about "reforming" and testing electrolytic capacitors
Table of Contents
- Please read first Activity Report - July 23, 2004
- An Interim Report by Ed Thelen, August 2006
- Bob Lash to Robert Garner Capacitor Reforming - August 30, 2004
- A long response to short questions - Feb 2006
- A sequence of e-mails about Reforming Electrolytic Capacitors July 2015
An Interim Report by Ed Thelen, August 2006
I suggest replacing old high voltage (greater than 400 volts?) electrolytic capacitors. Gory details here ;-)) We have not completed testing/reforming all the electrolytic capacitors in the 1401 system. (We have not processed the last three of the five 729 tape drives so this is not a "final report". We are working on the mechanical issues as higher priority than electrical issues.)
However - I have formed some definite opinions about the characteristics of long unused (no voltage applied) electrolytic capacitors in this 1401, and likely other industrial electrolytic capacitors of the 1960s and 1970s.
"Executive Summary"
The 1401 system had not been powered up for at least 20 years, and we worried about the electrolytic capacitors.
Of over 100 capacitors tested, none failed nominal testing.
"Higher voltage" electrolytic capacitors (say over 70 volts) take a lot more "reforming" than "low voltage" electrolytics.
Gory Details
- Ron Williams made a nice 30 volt unit with a low wattage electric light as a current limiter, as per various Internet sites. Hmmmm - no picture? This was useful in testing/reforming the capacitors in the power supplies in the 1401 itself. See 1401 capacitors.
It was difficult to distinguish the normal inrush current into a capacitor, from any reforming action that might be occurring. The current limiter lamp seemed to glow in about the same time pattern with both long unused and recently used capacitors. It seemed that these low voltage capacitors were relatively well formed.
There were several capacitors that had oozed in service, and the results were now hardened - presumably by evaporation. These units tested as working, and are actually in service in the 1401 now.
We tested each capacitor for at least rated capacitance at rated voltage by watching its discharge curve through a known resistance.
- (The manufacturing tolerance of electrolytics is typically -10% to +90% nominal. None were found less than +5% rated capacitance.)
We also tested each capacitor for internal leakage by charging the capacitor up to rated working voltage, letting it soak for maybe 30 seconds, then watching its discharge curve through the usual voltmeter 10 meg-ohm resistance. If it seemed to be less than 5% in about 60 seconds we figured it OK.
- There was a fuse blowing situation in a 026 key punch donated by someone in Morgan Hill. We found an electrolytic capacitor, reformed it, and the fuse blowing went away and we could get on with trying to make the rest of the 026 work. (Jan 22nd, 2005) That capacitor took about a minute to reform through a 4 watt 120 volt light bulb.
We forgot to re-form a 5400 ufd 50/60 volt capacitor in a 077 collator. The capacitor got damaged and needed replacement (Wednesday May 11, 2005) (Who ever had installed that power supply also disabled its circuit breakers!)
- To handle the higher voltage capacitors, for instance the 60 volt power supply for the printer hammers, Ed Thelen then made a unit with a VARIAC (continuously variable transformer) and a low wattage lamp current limiter, and a switchable discharge to facilitate measuring the effective capacitance. (fewer clip lead changes ;-)) Thankfully no picture ;-))
Using the above variable voltage system we tested/reformed a number of low voltage (below 30 volt working) and higher voltage (up to 170 volt working in a 729 tape drive) capacitors.
The 60 volt capacitors seemed to take about 2 times the normal inrush current to begin normal function, and the 170 volt capacitor seemed to take 15 or 20 times the normal inrush current to reach normal working voltage.
Capacity and leakage of all tested capacitors seemed reasonable.
- Grant Saviers later got us a capacitor tester that also tested ESR, (Effective Series Resistance). See Wednesday September 7th report on main page.
We have not used this since the capacitors seem to be working well, and run at about ambient temperature (they do not get noticeably warm from their ESR, so we assume their ESR values are well with in requirements.
When we start testing the remaining four 729 tape drives, ideally we will more exactly determine
a) normal inrush coulombs vs excess coulombs that may be reforming the capacitors, in the various capacitance and voltage ratings. b) ESR of the capacitors.
and provide more interesting details.
--Ed Thelen, October 18, 2005
Bob Lash to Robert Garner
Capacitor Reforming - August 30, 2004
----- Original Message ----- From: "Bob Lash" < bob@bambi.net > > Hi Robert - > > From what I understand, once a cap is reformed > sufficiently to be back within the manufacturer's > maximum rated leakage for new parts, and is put > back into use, the capacitor will continue to > "reform" from normal usage. So I would expect these > caps to generally become "better" in leakage > characteristics as long as they are used frequently > going forward. This factor (along with avoiding excessive > ambient heat) will probably have the largest impact on > the long-term performance of the parts. > > See you Tuesday! > > Best wishes, > > BobFrom Ed Thelen < ed@ed-thelen.org >The above is identical with my "impression".
(knowledge is too strong a word by far)
Robert -
Does your capacitance meter measure ESR (Effective Series Resistance)?
This is an interesting parameter that might be more
useful than a marginal electrical leakage -
A commercial ESR testing unit"CapAnalyzer 88A Series II"
is available for $200 atwww.newark.com/NewarkWebCommerce/newark/en_US/support/catalog/productDetail.jsp?id=96B1905 Robert mentioned that it would be nice to find diagnostic tests/information predictive of early end-of-life of electrolytic capacitors.
Anyone hear of such? Also, a presentation about the 2002 Taiwanese capacitor problem is here
http://www.niccomp.com/taiwanlowesr.htm
where someone blew-it on the magic elixir electrolyte.Cheers
Ed Thelen
Robert Garner responded The Sencor tester I brought in does not test ESR. As the web site noted, a signal generator and scope is sufficient. (But should use sine, not square waves.) Could also check several/many different frequencies, a full frequency response being ideal. Question with ESR is what are acceptable values for the particular cap.Mike Cheponis responded FWIW, we completely ignored ESR in our measurements. We did consider capturing it, but the additional complexity / time versus useful information didn't seem worth it. After all, these caps are, for the most part, in full-wave linear power supplies. This means they see smooth 120 Hz cosine waves applied to them during operation. ...A long response to short questions - Feb 2006
----- Original Message ----- From: Henk Stegeman To: Ed Thelen Sent: Wednesday, February 15, 2006 12:14 AM Subject: Reforming electrolytic capacitors > Hi Ed, > How are you and the 1401 project doing ? Somewhere about 50% up to running w/o tapes - http://www.ed-thelen.org/1401Project/CurrentStatusReport.html Lots working, lots not - the current struggle is apparently with an installed instruction/i/o overlap feature that is - complex, touching lots of the 1401 parts - uncommon - our experts are not familiar with it > I believe you are the specialist on reforming capacitors. I've had more experience than most :-)) > I bought a second IBM S/3 in Germany and this one has > been out of action for at least 20 years. Ah, how interesting :-)) > See: http://home.hccnet.nl/h.j.stegeman/PIC00014s.jpg BEAUTIFUL !!! Do you have any restoration tales? > It's capacitors might need reforming. And indeed, in my experience, the medium voltage electrolytics (say 25 to say 60 volts) probably could use some care in starting and the high voltage electrolytics (say 75 to say 300 volts) *definitely* require some care. http://www.ed-thelen.org/1401Project/ActivityReport-Jul-23.html http://www.ed-thelen.org/1401Project/ActivityReport-Aug-04.html > I have some questions about reforming electrolytic capacitors > and hopefully you can shine some light on them. I suspect an electro-chemist could give some theoretical comments, and I can give you some practical "light" ;-)) > Q1: what is exactly the issue with these old unused capacitors ? In *practice*, at least my experience with the capacitors bought in the late 1950s, the ability of the high voltage capacitors to have high electrical resistance to DC current at rated working and maximum voltage virtually disappears - until some controlled current in applied for a while. This application of controlled current can be called "reforming" mimicking the manufacturing "forming" process of electrolytics in the 1950s I have no idea what the manufacturing process is currently. > Q2: what happens when reforming ? I am told that one surface of the polarized aluminum foil develops an increasingly thick insulating (dielectric) layer, increasing its ability to withstand voltage across the layer. Apparently as the coulomb per square surface through the capacitor increases, so does the thickness of the dielectric, and so does the voltage rating. :-)) And of course, the thicker the dielectric per square surface, the lower the capacitance per square surface. :-(( I understand that the major differences of low and high voltage rated capacitors is the > Q3: what are the consequences if I don't reform them first ? In my experience with low voltage rated electrolytics, - not electrically stressed for about 20 years, - say below 20 volts working, you might not notice much difference. Maybe some increase in inrush current the first time energized, then normal performance We wanted to test the power supplies anyway, using current limiting say 7 watt incandescent lamps At the beginning I used a continuously variable transformer, but everything seemed normal. So I eventually skipped the transformer and used a 7 watt incandescent lamp in series with the power cord. With medium voltage and high power supplies, I eventually stayed with the series lamp resistance - but you could definitely see the lamp stay bright for much longer times with the higher voltage capacitors. > Q4: was reforming really needed with the 1401 electrolytic capacitors ? There are folk lore stories of exploding capacitors. The tales of manufacturing folks expressed that lots of heat and be generated during the forming (and "reforming") potentially vaporizing the electrolyte (steam!!) and the resulting internal and external damage. I can add a folk tale. We have an 026 key punch that was unused in a garage for many years. We turned it on. Nothing visible happened - Hmmmm Checking about we found an open fuse, replaced it. Turned on the 026 - nothing - and the new fuse was open. Bother - some darned short !! Then we spotted a 300 volt electrolytic capacitor in there. Hmmmm - could that be it?? Disconnected the capacitor and inserted a 7 watt lamp in series with 100 volts DC. Lamp glowed brightly for maybe 30 seconds, then slowly turned dull red, then on light. Hmmmm - we discharged the capacitor and tried again - this time normal appearing inrush current making a brief flash, then OK :-)) We increased the voltage sequence to about 300 volts, with the "reforming" apparent at each step. We re-installed the capacitor into the 026 key punch, and no more blown fuses - ever - > Thanks for time and reply ! Any time - However, I didn't include in the above the much more extensive testing of each capacitor for - capacity - placing a resistor across each charged capacitor and watching the voltage fall with time, and measuring the time and checking with the expected RC decay ALL capacitors exceeded rated capacity - catalogs express that electrolytics have a capacity range of from +10% to +90% rated. - series resistance - placing a 10 meg ohm voltmeter across a charged capacitor and checking that the discharge was slow - I was really checking to assure that there would be very little DC heating effect which might get exciting. I was expecting (and observing) that the apparent DC resistance increased with stress time. Testing omission. I did not have an ESR meter available at the time http://ed-thelen.org/1401Project/Sched2005July.html http://ed-thelen.org/1401Project/ESR-Meter-Doc-.jpg So I monitored any heating effect of the completed power supplies under rated load for say 10 minutes in still air. There was no apparent capacitor heating, as tested by touching, in still air of any of the capacitors in any of the power supplies. > Regards Henk