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Abstract. Random number generators of the mixed eongruential type have recently 
been proposed. They appear to have some advantages over those of the multiplieative 
congruential type, but they have not been thoroughly tested. This paper summarizes the 
results of extensive testing of these generators which has been carried out on a decimal 
machine. Most results are for word length 10, and special attention is given to simple mul- 
tipliers which give fast generators. But other word lengths and many other multipliers are 
considered. A variety of t~dditive constants is also used. It turns out that these mixed gener- 
ators, in contrast to the multiplieative ones, are not consistently good from a statistical 
point of view. The cases which are bad seem to belong to a well-defined class which, unfor- 
tunately, includes most of the generators associated with the simple multipliers. However, a 
surprise result is that all generators associated with one of the simplest and fastest mul- 
tipliers, namely 101, turn out to be consistently good for word lengths greater than seven 
digits. A final section of the paper suggests a simple theoretical explanation of these ex- 
perimental results. 

1. Generators To Be Tested 

Almost all random number generators that  are used in practice can be obtained 
as special cases of the following procedure. One begins with the non-negative 
integers x0, a, c, and m, where m is the largest. Then one defines xl ,  x2, . . .  to 
be the non-negative integers less than m generated by 

xi+l-= a x ~ + c  ( m o d m )  i = 1,2, - . -  (1) 

Finally, the sequence xo/m, x~/m, •. • is taken to be the sequence of random num- 
bers. Tile hope is that  the parameters x0, a, c, and m have been chosen so that  
the resulting sequence appears to be drawn at random from the uniform distri- 
bution on [0, 1]. Such a sequence is often called "pseudo-random." A general 
treatment of these generators is given in [6], along with an extensive bibliography. 

In practice it is especially convenient to choose m according to the particular 
computer being used, e.g. 101° or 2 ~5, and then the problem is to choose the re- 
maining parameters x0, a, and c so that  the period of the resulting sequence is as 
great as possible. Finally, one tests subsequences to see if they appear to be 
random. 

Until recently the only cases considered were those associated with choosing 
e = 0. Corresponding generators arc called "multiplieative" congruential gener- 
ators. By choosing x, and a according to certain specifications [6], one can ensure 
that the resulting sequences are as long as is possible for this case, c = 0. For 
example, the maximal periods are 5 X 10 s when m = 10 ~°, and 23s when m = 2 sh. 
Using m = 10 r" on a decimal machine, the fastest generators yielding maximal 
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period h a x e a  = t0 s q- 3 or a = 10 s + 11 for S ~ 2, because then the neces- 
sary multiplications are easily effeeted by shift-and-add instructions. 

The nmltipticative generators haw~ generally demonstrated good statistical 
behavior. They  have consistently passed the statistical tests which have been 
designed to test their randomness. 

In  sexeral recent papers by  Coveyou [1], Greenberger [4, 5], and Rotenberg [9], 
various "mixed"  congruential  generators (c ¢ 0) have been proposed and dis- 
cussed. See also [6, 7, 8, 10]. 

Theoret ical ly these generators have a number  of small advantages over the 
multiplieative generators. They  can have longer periods; they  may  be used with 
any start ing value, and, on most machines, they can be faster than the fastest 
multiplicative generators. I t  is easy to ensure that  their periods are .m. On a 
decimal machine one has only to require tha t  a ~ 1 (rood 20), and that  c be not 
divisible by either 2 or 5. The  fastest such generators have a = l0 s + 1 for S > 1, 
because these generators are easily effected by shift-and-add instructions. 

Most  tests of mixed generators tha t  have been reported so far are quite limited 
[7, 8, 9]. The y  suggest tha t  the statistical behavior of these generators is as good 
as that. of the multiplicative generators. However,  we will see tha t  more extensive 
testing soon uncovers examples of mixed generators which are completely un- 
acceptable. For tunate ly ,  most examples tu rn  out to be acceptable, including one 
of the simplest and fastest. 

2. Statistical Tests 

M a ny  different statistical tests have been suggested for the testing of random 
number  generators. References are given in [6]. We decided to use only the two 
best known ones throughout  most of our investigation, because we first wanted 
to get an overall picture by examining a large munber  of cases. We used the fre- 
quency test and a serial correlation test. Our first step was to apply these tests 
to blocks of 1000 numbers each. 

For  the frequency test  we let f~ (i = 1, 2, . - .  , 10) be the number  of num- 
bers u satisfying (i - 1) /10 =< u < i /10 and then we computed 

10 

x ?  = -  0o) 

which, for a t ruly random sequence, is distr ibuted asymptotical ly as x 2 with 9 
degrees of freedom. This statistic was then computed for each of 100 consecutive 
blocks. Next  we let F¢ be the number of the resulting 100 values of x~ 2 which 
were between the (i  -- 1)-th and the i th  deciles for the xLdistribution with 9 
degrees of freedom, and we then computed 

10 

x,7: Z 1o) 
i = l  

For the serial test we let f,,;5 (i, j = 1, 2, • •. , 10) be the number of numbers 
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u satisfying (i -- 1)/1.0 ~ u < i/tO and followed by a number v satisfying 
( j -  1) /10 G v < j/lO. We then computed 

10 

x2 = E 10) 
i , j = l  

I t  is known [2, 3] that  x22 -- xl 2 is, for a t ruly random sequence, distributed 
2 asymptotically as 2 with 90 degrees of freedom. We calculated ~ -- xl 2 for each 

of 1O0 consecutive blocks. Then  we let Si be the number of the 100 values so 
found which were between tile (i  - 1)-th ~nd the i th deciles for x 2 with 90 de- 
grees of freedom. Finally, we computed 

10 
2 

= E ( z ,  - 10) 
i=1 

Thus, the two test statistics xr  2 and x~ 2 were computed for samples of 100,000 
elements drawn from the sequence [x,Jm} produced by each generator (1). 
Generally, for each sample only these two values were printed by the program. 

In what follows, it will be convenient to refer to a particular generator as being 
"acceptable" or "good" at a given significance level (.01 for our tests) if the 
values of xF 2 and xs 2 are not inconsistent with the hypothesis tha t  they are drawn 
at random from the x2-distribution with 9 degrees of freedom. 

If for a particular generator the observed values of x~ 2 or xs 2 exceed 21.7 (the 
99 percent level for x 2 with 9 degrees of freedom),  this may  be due either to 
ordinary sampling variability or to regularities in the sequence sufficiently pro- 
nounced that  the sequence cannot bc considered a result of random drawing from 
the uniform distribution. 

From the first consideration alone, one expects that  about  1 percent of all 
generators tested would be "re jected"  using the 99 percent level. On the othex 
hand, as a result of the second factor one may  observe extremely high values of 
tim test statistics, far in excess of the 99.9 percent, or even the 99.99 percent, 
levels. The occurrence of these extremely high values we took as an indication 
that the sequence sampled was too regular to be suitable for use as a pseudo- 
random sequence. 

A multiplier a may be considered as defining a class of generators. Before a 
single multiplier can be considered satisfactory for use, many generators within 
the class ought to be t e s t ed - - tha t  is, the multiplier ought to be tried with many 
different values of x0 and c. 

We might define an acceptable multiplier by requiring tha t  each generator 
within the associated class be acceptable, but  this would not allow for ordinary 
sampling variability. Therefore it will be convenient to refer to a multiplier as 
acceptable if, when used with different values of x0 and c, it yields no extremely 
high values of x~ ~ or xs 2, and no more than about  1 percent in excess of 21.7. 

3. General Results for Word Length 10 
For machines with word length 10 it is natural  to choose m = 10 l°. We decided 

to begin our tests with an overall survey using this value of m. 
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Prel iminary tests hact suggested that  tile statistical behavior  of a sequence 
depended pr imari ly  on the multiplier ~,. We therefore hoped to obtah~ a good 
cross-.section of the different possibilities by first, tixing :r0 and c, and then letting 
~ va ry  sys temat ica l ly  over representat ive samples of the values yielding maximal 
period. We ehose Xo = 0 and c = 1, and we concentrated on values of a which 
were either relatively small or were congruent  go 1 modulo fairly large numbers. 
We felt that  by  thus choosing the parameters  to be relatively simple we would 
have the best chance of uncovering unacceptable  cases, if any  existed. 

Since the choice of x0 and c generally has not a great  effect on the acceptability 
of a generator,  in this section we pronounce judgment  on some multipliers on the 
basis of these tests of a single representat ixe generator.  Fuller testing of nmlti- 
pliers of special interest  is reported in the next section. 

We tested more than  1000 different multipliers under  these circumstances.  On 
the basis of this sample, we have come to the conclusion tha t  less than  1 percent 
of all possible multipliers giving m a x i m u m  period are unacceptable.  Moreover, 
wit.h the single exeeption of a = 21, all the unacceptable  multipliers are in- 
eluded in the 4 percent  of all possible nmltipliers which are eongruent  to 1 
(rood 500). These conclusions were a t  first based pr imari ly  on results for the 
multipliers a = 100t(20) 1501(100) 18001(500)44001(4000)23000t(10000) 
540001. 

In  searching for a pa t t e rn  which might  characterize the unacceptable  multi- 
pliers, we also tried other runs, such as a = 1000501(500)1101501, where tile 
emphasis  was on those which appeared  to be bad. We noticed t ha t  the unaccept- 
able multipliers const i tuted just over  half of those which were congruent  to 1 
(rood 2500), most  of those congruent  to 1 (rood 4000), and all of those congruent 
to 1 (rood 5Cgl0). I t  is in this sense tha t  our results tend to characterize bad  mul- 
tipliers as those which are congruent  to 1 modulo fairly large numbers.  Table  1 
illustrates these results. 

La te r  we wanted to test  more carefully the idea tha t  unacceptable  multipliers 
m~,st be congruent  to 1 (rood 500), and we tried a = (10 "~ + 1)(20) (10 s + 501) 
for S = 4, 5, • -. , 9. Table  2 shows some of the results for the case S = 5, which 
are typical.  Incidentally,  the ease S = 5 is of special interest  because it. has 
been s ta ted  elsewhere [1, 4, 5] tha t  multipliers near  to ~,/~{ should have  small 
serial correlations. The  s ta tements  were based on a theoretical es t imate of the 
serial eon'etation for a sequence covering the full period, and therefore need not 
be applicable to the shorter  sequences such as we are testing. 

We also tried a = 21(20)981. I t  was then tha t  we found a = 21 to be unac- 
ceptable.  I t  gave x~3 = 10.0, but xs 2 = 258.6. In  passing, we r emark  tha t  a = 21 
can also be used as the multiplier for a mult ipl icat ive congruential generator  and 
will give the m a x i m u m  period for such generators of 5 X 10 s. But  it, is not accept- 
able there either. Using x0 = t, we obtained x~, 2 = 9.8, but  xs 2 = 279.8. 

La te r  we also r emark  tha t  (t = 101 yields an acceptable generator,  giving 
xF 2 = 20.6 and xs ~ = 3.8. In  connection with this multiplier it should be pointed 
out  tha t  it is the only one of the simple, and therefore fast, multipliers of the 
form 10 s ÷ ] which is not eongTuent to I (mod 500). 
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TABLE 1. Typical  results for multipliers 
which satisfy ~he condition a ~ 1 (rood 
500). Except for a = 21, all unacceptable 
multipliers satisfy this condition, The re- 
sults are for x0 = 0 and c = 1. The 99 per- 
cent level is 21.7. 

501 
1001 
1501. 
2001 
2501 
3001 
3501 
4001 
4501 
5001 

XF 2 

5.4 
6.0 

10.8 
10.6 
96.6 
5.2 

11.8 
88.4 
6.8 

193.2 

X 8  ~ 

7.4 
9.6 
5.8 

17.8 
25.8 
5.6 
5.6 

12.2 
11.4 

131.8 
5501 
6001 
6501 
7001 
7501 
8001 
8501 
9001 
9501 

10001 
10501 
11001 
11501 
12001 

14.2 6.8 
10.2 4.4 
6.4 9.2 
9.2 6.6 

45.0 13.6 
39.6 8.4 
10.2 7.8 
4.4 9.6 

11.2 7.4 
238.2 124.8 

4.4 14.0 
4.2 11.0 
5.2 24.0 

41.4 22.8 
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TABLE 2. Typical results for nmltipliers 
which are congruent, to 1 (mud 20). Only the 
first one is not acceptable. The results are 
forx0 = 0 a n d c  = 1. 

a X F  ~ 

100001 520.8 
100021 4.4 
100041 6.2 
100061 10.8 
100081 11.6 
100101 9.8 
100121 6.2 
100141 7.0 
100161 8.6 
100181 20.6 
100201 12.2 
100221 5.0 

100481 10.4 
100501 4.2 

: 

X8 = 

900.0 
14.8 
2.6 

12.8 
14.6 
3.2 
6.4 

10.0 
5.4 

16.2 
7.8 
5.6 

14.4 
18.0 

We next  cons ider  br ief ly  t he  effect of chang ing  e i ther  x0 or  c. 
Tile va lue  of x0 was changed  in some of t he  cases of this  sect ion,  as  well as in  all  

cases of the  nex t  section.  I n  genera l ,  these  changes  d id  not  no t i ceab ly  affect the  

accep tab i l i t y  of t he  resul ts .  
The effect of chang ing  c was  more  not iceable .  W h e n  a mul t ip l i e r  was ve ry  bad  

with c = 1, m o r e  c o m p l i c a t e d  va lues  of c would  a lmos t  a lways  cause the  resul ts  
to improve ,  b u t  no t  enough  to m a k e  t h e m  accep tab le .  F o r  an  example ,  see 
Table 3. W e  f o u n d  no fu r t he r  re la t ionsh ip  be tween  the  c omple x i t y  of c and  the 
degree of i m p r o v e m e n t .  W h e n  resul ts  were on ly  m o d e r a t e l y  bad  wi th  c = 1, 
more c o m p l i c a t e d  va lues  of c would  of ten  m a k e  t h e m  accep tab le .  F o r  example ,  
see Tab le  4. 

U n a c c e p t a b l e  resul ts  were u sua l ly  caused  b y  va lues  of the  ind iv idua l  xl 2 and 
x22 being too  large.  I t  occas iona l ly  h a p p e n e d ,  however ,  t h a t  x 7  was unaccep t -  
able, no t  because  of too m a n y  large va lues  of xl 2, b u t  because  the  values  of xl ~ 
were too n e a r l y  the  same,  a n d  s imi l a r ly  wi th  Xs ~. Th is  h a p p e n e d  on ly  ra re ly ,  but  
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it does il lustrate the possibility of having good local behavior  along with bad 
global behavior.  One usually worries about  the possibility of bad local behavior 
e \ e~  though the global behavior  might  be good. 

4. t(G}ct qf C h a n g i w  the Word  Length 

We now consider' word lengths other than  10. One reason for doing so is that 
there are machines with word lengths 6 and 12. Moreover,  word length 8 might 
be useful for an  algebraic compiler on a machine with word length 10, when 8 
digits are used for the " m a n t i s s a "  of a floating-point number .  Also, with variable- 
word-length machines it would be useful to have generators  with as small a 
modulus as possible in order to take advan tage  of the shorter generating times 
that would result. 

For  these experiments  we concentrated our a t ten t ion  on multipliers of the form 
10 s + 1, but  we considered m a n y  different values of e for each multipl ier  and 
three values of z0 for each generator.  Specifically, for each word length L = 6, 
7, . . .  , 1'2, we tried mos t  of the values S = 2, 3, . . .  , L - 1 .  For  each L and S 
we took c = 1, 3, 7, 9, t l ,  33, 77, 99, 111, .. • , m - l ,  and for each generator  we 
;ook three sequences of 100,000 each f rom the first 300,000 numbers  beginning 
,vith x0 = O. 

The results were r emarkab ly  consistent. In  general, the larger the value of S 
;he worse die multiplier,  and the smaller the value of L the worse the multiplier. 
~peeifically, the mult ipl ier  for S = 2 was good for all x0 and c, arid for all values 
)f L with the exception of L = 6 and a few eases for L = 7. The  multipl ier  for 
S = 3 was good ouly for L = 11, 12, a l though it was only marginal ly  bad  for 
5 = t0. The  other  multipliers for S = 4, 5, . - .  , L - 1  were all bad. Table  5 
;ummarizes the results. 

For the sake of completeness we consider one fur ther  advan tage  tha t  mixed 
:ongruential methods  might  have  over mult ipl icat ive ones. I t  has been claimed 
h a t  adding a complicated c in a mixed method might  scramble the least signifi- 
:ant digits more than  they are scrambled with mult ipl icat ive methods.  The 
~dvantage would be tha t  several par ts  of one number  might  then  be used sepa- 
'atety to give several r andom numbers  a t  once. We have  not  tes ted this idea 

7ABLE 3. Examples which illustrate how 
aore complicated values of c can cause the TABLE 4. Examples which illustrate how 
esult for a very bad multiplier to improve, more complicated values of c can cause the 
?he multiplier is a = 100001, while xo = 0. result for a moderately bad multiplier to 

c X F  2 X S  ~ 
[ 

1 i 
111 I 

7777 
87291 

72911267 i 

520.8 
39.8 
16.4 
15.2 
12.2 

900.0 
786.2 

14.0 
159.8 
85.6 

become acceptable. Tile multiplier is 
a = 108001, while x0 = 0. 

6 X F  ~ X S  2 

1 7.4 32.0 
7777 6.2 6.6 

87291 8.2 12.0 
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TABLE 5. Condensed results for multipliers of the form 1~ + 1. Entries are percentages 
of x,~J or xs 2 which exceeded the 99 percent level of 21.7. Brackets indicate 
entries for which the number of cases was less than indicated at the top of the 
c o l u m n .  

Multi- 
plier a 

[ 
Word length L . . . . . . . . . . . . . . .  I 6 

Number  of  cases per  144 
mul t ip l ier  . . . . . . . . . . . . . . . . .  

16o  10 ~ + 
10 8 + 
10 4 -.~ 

10 ~ + 
10 6 + 
10 7 + 
1(5 + 
10 9 + 

1 
1 
1 100 
1 (lOO) 
1 
1 
1 
1 

. L_ . . . . .  L _  

168 192 

4 1 
84 73 

100 88 
100 100 
100 100 

100 

9 

216 

2 
45 
76 
89 

100 
100 

(lOO) 

10 

240 

3* 
7 

90 
94 
91 

100 
100 

i 100 

11 

264 

2 
1 

(60) 

12 

288 

1 
1 

26 
(lOO) 

* Rounded from 2.5. 

thoroughly, bu t  the results of this section are applicable. For example, the re- 
sults for word length 8 are exact ly the results one would get if one tested only the 
third digits of the numbers  of word length 10. From the results of this section we 
therefore conclude tha t  only the first 3 digits of the 10-digit numbers are reliable, 
and this is p robably  no bet ter  than  would be obtained with multiplicative 
methods. In  any  event  we have not tested for any  correlation between the 

different digits of each number.  

5. The Mult ipl ier  101 

The only one of the simple shift-and-add multipliers tha t  has been consistently 
good so far has been the one corresponding to S = 2, namely 101. I t  appears  
to be reliable for all word lengths L ~ 8. 

As a final test  of this multiplier we decided to carry out the serial test  using 
only every second number  in each sequence of 200,000 numbers and then using 
only every third number  in each sequence of 300,000 numbers. These tests for 
serial correlations of lag 2 and lag 3 would be of interest in various appl icat ions--  
for example, if one wanted to generate points in the plane or in space. These 
tests were performed only for word length 10. But  we tried c "~ 1, 3, 7, 9, 11, 33, 
77, 999, 111, . . -  , 101°-1, and for each value of c we used the three sequences 

following each other, beginning with x0 = 0. 
Table 6 shows some typical  results. The multiplier 101 has once again turned 

out to be acceptable.  (By contrast,  1001 was unacceptable, being particularly so 
for lag 2.) I n  these and the earlier experiments, we have deliberately chosen 
special values of c which might  be expected to lead to pat terns  in the generated 
sequences, if any  choices are going to lead to such patterns.  Under these circum- 
stances the results definitely lead to the conclusion tha t  we can rely on the 
multiplier 101 as long as the word length is a t  least 8. 
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~['ABI,E t;. Typical results of the serial test for lags 
I, 2 and 3, using different values of c 
with the multi ~lier 101. 

c lag I lag 2 lag 3 

1 3.8 6 ,~ 15.0 
33 8.4 7.2 4.6 

7777 12.0 5.4 11.6 
909999 5.4 8.0 3.0 

A fl~tal remark should be made concerning the speed of the shff't-and-add 
multipliers, Generators associated with the multiplier 101 will in general be the 
fastest of all the possible mixed or nmltiplicative congruential generators. Such 
a generator will ordinarily require the following sequence of instructions: 
FETCH :r, SItIFr 2 PL~aC~S, aDD a:, ADD C, STOaE x. The fastest nmltiplicative gener- 
ators are associated with the multipliers 10s+3 and 1 0 S + l l ,  which would ordi- 
nari!y require an extra instruction. However,  the relative speeds of different 
generators will depend also on the machine itself. For example, on an IBM 1.620 
with it.s variable word length and its two-address instructions a multiplicative 
generator with a = 106 + 11 is actually faster (requiring about  2 msec) than a 
mixed generator with a = 10t (requiring about  2.5 msee). By  comparison, the 
generation t ime would be about  20 msec if a shift-and-add multiplier were not 
used. 

6. A n A~aZytica~ Interpretation 

In  this section we present a brief analysis which helps to explain the results 
outlined above and which supports the conclusions drawn there. 

Repeated application of the defining relation (1) yields 

(a ~ -  1)c 
xn =-- a~°xo + (rood m). (2) 

a -  1. 

We assume throughout  tha t  the multiplier a has the form 

a = 10k + 1, k an even integer; (3) 

with ?n a power of 10 and c relatively prime to m, this condition is sutficient to 
guarantee that  the generator (1) has full period m [6]. Then  x0 determines only 
the starting point in the full sequence characterized by  a, c, and m, and we may 
without loss of generali ty suppose x0 = 0. We take m = 10 L, and for the moment  
assurne c = 1. 

Then the expression for z~ becomes 

z~ -~ ~ n k~10 j (mod 10 L) (4) 
j=0 j +  1 

when it. is observed that  no terms having a faetor 10 ~, i ~ L, will appear  in a 
number  of L digits. 
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The three principal conclusions which evolved from the results described in 
preceding sec~ion.s were: 

(i) sequences associated with multipliers of the form 

a = 10 s ÷ 1 (5) 

display suitable statistical properties only if S is small relative to the word length 
L (see Table 5) ; 

(ii) other sequences displaying unsatisfactory statistical behavior are asso- 
elated with multipliers falling in fairly well-defined residue classes; 

(iii) the statistical properties of a sequence may be improved somewhat by 
a suitable choice of c (see Tables 3 and 4). 

Relation (4) suggests an explanation of the results summarized above. Sup- 
pose that the multiplier a has the form (5). Then (4) becomes 

~ (  n )I0S~' (modl0L),  (6) 
x ~ -  j + l  

and the index j will run only from zero to the largest integer not exceeding 
(L - 1) /S .  Thus if S ~ L/2,  at most two terms will appear in sum (6). That is, 

x ~ - n + ( ~ ) X l O  s (modIO ~) (7) 

so that 

x~+~--= x,~+ 10 s X n +  1 (modl0L). (8) 

It is not surprising that such a generator is found to have unsatisfactory sta- 
tistical properties. 

As L / S  grows, additional terms enter sum (6), and satisfactory statistical be- 
havior becomes possible. Table 5 suggests that at least four, and probably five 
terms of the sum are necessary before even our (minimal) statistical require- 
ments are met. 

Rather picturesque considerations suggest that not only the number of terms 
in the expansion (4), but also their size and the amount of "overlap" of terms 
will influence the statistical properties of the generator. Introducing multi- 
pliers of the more general form (3) may have one of two effects. 

If, in expression (3), k has factors relatively prime to 10, then these factors and 
their powers remain to "enlarge" each term in expansion (4), thereby creating 
"overlap" of terms, and thus more effectively "scrambling" the digits of succes- 
sive elements of {x,,}. Exactly the same argument may be offered to explain why 
more complicated values of c tend to improve results somewhat. For if c ~ 1, 
expression (4) reads 

~ (  n )kq0~  (modl0L),  (9) x ~ - ~ c  j +  l 

and c--chosen always relatively prime to 10--remains as a common factor in each 
term of the expansion. 

If, on the other hand, k contains factors which are divisors of 10, these may 
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regularly combitm with the binonfial eoefliciengs to create powers of 10--simple 
shifts of terms leftwards--which simplify, aud reduce the number of, terms in 
expansion (4). 

To illustrate these considerations, compare the generators associated with nml- 
t ipliersa = 10: '+ t, a = 4.10 a + 1, a = 7.10a+ 1, a = 104+ 1. The 
corresponding expansions are 

n ) 10 a~ (mod 10 *') (10) 

( n )4slO;~J (modlOC) (11) 

( 'n )7/10<i (modlOL) (12) 
j + l  

( n ) 1 0 ~ S  (modl0L). (13) 
a:,~ ~ ~ j + l  

For L = 10, expansion (13) contains at most three terms; the corresponding 
generator was unacceptable in our tests. (See Table 1.) Expansion (10) contains 
four terms and appears to yield (with c = 1) an acceptable sequence. Generators 
with a = 4001 were found to be much worse. A possible explanation follows. 

( n ) h a s a f a c t o r 5 .  Bu t the  Expansion (11) may have fore" terms, unless j + 1 

binomial coefficient( n ) h a s a f a e t o r 5 w h e n e v e r n ~ 4 ( n l o d 5 ) , a n d t h u s j  + 1 

She sequence generated by (11 ) has runs of four consecutive elements out of five 
determined by only three terms. 

Expression (12), on the other hand, has four terms throughout, each magnified 
by a factor of 7 j. It displays satisfactory statistical properties. 

This aNument  , then, leads to the conclusion that multipliers for which 
(a -- 1)/20 is relatively prime to 10 may be most suitable. Tile discussion is not 
completely precise, but it does focus on two obvious considerations affecting the 
properties of a sequence--namely, the number and nature of the terms in ex- 
pansion (4)--which provide a simple and consistent interpretation of the experi- 
mental results. It demonstrates convincingly that if m = 10 L, multipliers of the 
form a = 10 s + 1 will generally give poor results unless a is much smaller than 
10 L~2. I t  suggests that more suitable multipliers may be found among those for 
which (a -- 1) has factors which do not divide 10, along with the fast and simple 
multiplier a = 1011. 

Our tests were designed to isolate generators which did not meet even plausi- 
ble minimum requirements. Though we have spoken of many multipliers as 
"good" or "acceptable," it remains of course to test any of these more exactingly 
to determine their suitability in particular uses. 
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