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Abstract. Random number generators of the mixed congruential type have recently
been proposed. They appear to have some advantages over those of the multiplicative
congruentisl type, bub they huve not been thoroughly tested. This paper summeurizes the
results of extensive testing of these generators which has been carried out on a decimal
machine. Most results are for word length 10, and special sttention is given to simple mul-
tipliers which give fast gencrators. But other word lengths and many other multipliers ave
considered. A variety of additive constants is also used. It turns out that these mixed gener-
abors, 1o contrast to the multiplicative ones, are not consistently good from a statistical
point of view. The cases which are bad seem to belong to a well-defined class which, unfor-
tunately, includes most of the generators associated with the simple multipliers. However, a
surprise result is that all generators associated with one of the simplest and fastest mul-
tipliers, pamely 101, turn out to be consistently good for word lengths greater than seven
digits. A final section of the paper suggests a simple theoretical explanation of these ex-
perimental results,

1. Generators To Be Tested

Almost all random number generators that are used in practice can be obtained
as speclal cases of the following procedure. One begins with the non-negative

integers @ , 4, ¢, and m, where m is the largest. Then one defines 2, , 25, -+ to
be the non-negative integers less than m generated by
Tigy = az; + ¢ (modm) t=1,2,---. (1)

Finally, the sequonce zo/m, 2:/m, - - - is taken to be the sequence of random mum-
bers. The hope is that the parameters =, , ¢, ¢, and m have been chosen so that
the resulting sequence appears to be drawn at random from the uniform distri-
bution on [0, 1]. Such a sequence is often called “pseudo-random.” A general
treatment of these generators is given in {6], along with an extensive bibliography.

In practice it is especially convenient to choose m aceording to the particular
computer being used, e.g, 10 or 2°, and then the prohlem is to choose the re-
maining parameters 2, , @, and ¢ so that the period of the resulting sequence is as
great as possible. Finally, one tests subsequences to see if they appear to be
random. ‘

Until recently the only cases considered were those associated with choosing
¢ = 0. Corresponding generators arc ealled “multiplicative’ congruential gener-
ators. By choosing xa and @ according to certain specifications [6], one can cnsure
that the resulting sequences are as long as is possible for this ease, ¢ = 0. For
example, the maximal periods are 5 X 10° when m = 10%, and 2% when m = 2%.
Using m =~ 10* on a decimal machine, the fastest generators yielding maximal

* Reccived Reptember, 1962.
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period have o = 10° -+ 3ora = 10° -+ 11 Jor 8 2 2, because then e neces-
sary multiplications are easily effected by shift-and-add instruetions.

The multiplicative gencrators have generally demonstrated good statistical
behavior. They have consistently passed the statistical tests which have been
designed to test their randomuess,

In several recent papers by Coveyou {1], Greenberger [4, 5], and Rotenberg [9],
various “rixed” congruential generators (¢ £ §) have been proposed and dis-
pussed. See also {6, 7, 8, 10].

Theoretically thebe generators have a number of small advantages over the
multiplieative generators. They ean have longer periods; they may be used with
any starting value, and, on most machines, they can be faster than the fastest
multiplicative generators. It is easy to ensure that their periods are m. On a
decimal machine one has only to require that e = 1 (mod 20), and that ¢ be not
divisible by either 2 or 5. The fastest such generators have a = 10° + 1 for 8 > 1,
because these generators are easily effected by shift-and-add instructions.

Most tests of mixed generators that have been reported so far are quite limited
[7, 8, 8. They suggest that the statistical behavior of these generators is as good
as that of the multiplicative generators. However, we will sec that more extensive
testing soon uncovers examples of mixed generators which are completely un-
aceeptable. Fortunately, most examples turn out to be acceptable, including one
of the simplest and fastest.

2. Statistical Tesls

Many different. statistical tests have been suggested for the testing of random
number generators. References are given in {6]. We decided to use only the two
best known ones throughout most of our investigation, hecause we first wanted
to get an overall piclure by examining a large number of cases, We used the fre-
queney test and a serial correlation test. Our first step was to apply these tests
to blocks of 1000 numbers each.

For the frequeney test we let f; (¢ = 1, 2, - -+, 10) be the number of num-
bers w satisfying (7 — 1)/10 £ « < ¢/10 and then we computed

10
xi = T a (f: — 1007

which, for a truly random sequence, is distributed asymptotically as x° with 0
degrees of freedom, This statistic was then computed for each of 100 consecutwe
blocks. Next we let ¥, be the number of the resulting 100 values of x,* which
were between the (¢ — 1)-th and the sth deciles for the x % distribution with 9
degrees of freedom, and we then computed

10

Xt =y 20 (Fy - 1007

il

For the serial test we let 7y (4,7 = 1,2, -+, 10) be the number of numbers

Y
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w satistying (2 — 1)/10 £ » < 4/10 and followed by a number » satisfying
(G — 1/10 = 2 < j/10. We then computod

Xe = %Z (i — 10)°

%, 5=l

It 18 known {2, 3] Lhdt xX& — xi° is, for a truly random bequence, dlbtrlbuted
asymptotically as x* with 90 degrees of freedom. We caleulated x2* — ¥:° for each
of 100 consecutive blocks. Then we let S; be the number of the 100 vahies so
found which were between the (7 — 1)-th and the ¢th deciles for x* with 90 de-
grees of freedom., Finally, we computed

10
§ =15 ; (8; — 10)%

Thus, the two test statistics x+ and xs* were eomputed for samples of 100,000
clements drawn from the sequence {z,/m] produced by each generator (1).
Clenerally, for each sample only these two values were printed by the program.

In what follows, it will be convenient to refer to a particular generator as being
“seeeptable’ or “good” at a given significance level (.01 for cur tests) i the
values of x+” and xs* are not inconsistent with the hypothesis that they are drawn
at random from the x’-distribution with 9 degrees of frccdom

If for a particular generator the observed values of x5 or xs exceed 21,7 (the
99 percent level for x* wilth 9 degrees of freedom), this may be due either to
ordinary sampling variability or to regularities in the sequence sufficiently pro-
nounced that the sequenee cannot be eonsidered a result of random drawing from
the uniform distribution,

From the first consideration alone, one expects that about 1 percent of all
generators tested would be “rejected” using the 99 percent level. On the other
hand, as a result of the second factor one may observe extremely high values of
the test statistics, far in excess of the 99.9 percent, or even the 99.99 percent,
levels. The oceurrence of these extremely high values we took as an indication
that the sequence sampled was too regular to be suitable for use as a pseudo-
random sequence.

A multiplier @ may be considered as defining a class of generators. Before a
single multiplier ean be considered satisfactory for use, many generators within
the class ought to be tested—that is, the multiplier ought to be tried with many
different values of z and ¢.

We might define an acceptable multiplier by requiring that each generator
within the associated elass be acceptable, but this would not allow for ordinary
sampling variability. Therefore it will be convenient to refer to a multiplier as
acceptable if, when used with different values of 2o and ¢, it yields no extremely
high values of x& or xs, and no more than about 1 pereent in excess of 21.7.

3. General Results for Word Length 10

For machines with word length 10 it Is natural to choose m = 10", We decided
to begin our tests with an overall survey using this value of m.
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Preliminary fests had suggested that the statistical behavior of a sequence
depended primarily on the multiplier «. We therefore hoped to obtain a good
cross-section of the different possibilities by first fixing 2o and ¢, and then letting
a vary systematically over representative samples of the values yielding maximal
period. We chose 2o = Qand ¢ = 1, and we concentrated on values of ¢ which
were either relatively small or were congruent to 1 modulo tairly large numbers,
We felt that by thus choosing the parameters to be relabively sunple we would
have the best chance of uncovering unaceeptable cases, if any oxisted.

Since the choice of oy and ¢ generally has not a great effect on the acceptability
i & generator, in this section we pronounce judgment on some mudtipliers on the
basis of these tests of a single representative generator. Fuller testing of multi-
pliers of special interest 1s reported in the next seetion.

We tested more than 1000 different multipliers under these eircumstances, On
the basis of this sample, we have come to the conclusion that less than 1 percent
of all possible multipliers giving maximum peried are unacceptable. Moreover,
with the single exception of a = 21, all the unaecceptable multipliers are in-
cluded in the 4 percent of all possible multipliers which are eongruent to 1
(mod 500). These conclusious were al first based primarly on rvesults for the
multipliers o = 1001{20) 1301 (100 18001 (50044001 {4000) 230001 { 10000)
540001,

In searching for a pattern which might chavacterize the unaecceptable multi-
plicrs, we also tried other runs, such as ¢ — 1000301(500)1101501, where the
emphagic wag on those which appeared to be bad. We noticed that the unaccept-
able multipliers eonstituted just over half of those which were congruent to 1
{mod 2500, most of those congruent to 1 (mod 4000), and all of those cougruent
ta 1 (mod 5000). It is in this sense thab our results tend to characterize bad mul-
tipliers as those which are congruent to 1 modulo faitly large numbers. Table 1
Hustrates these results.

Later we wanted 16 test more carefully the idea that unacceptable multipliers
must be congruent to 1 (mod 500), and we tried & = (107 + 1)(20) { 107 + 501)
for & = 4,5, -+ -, 9. Table 2 shows some of the results for the case 8 = 3, which
are typical. Incidentally, the ease 8 = 5 is of special interest because if has
been stated elsewhere [1, 4, 5] that multipliers near to 4/m should have small
serial correlations. The statements were based on a theorctical estimate of the
serial correlation for a sequence covering the full period, and therefore need not
be applicable to the shorter sequences such as we are testing,.

ceptable. Tt gave x» = 10.0, but xs” = 258.6. In passing, we remark that o = 21
can also be used as the raultiplier for a multiplicative congruential generator and
will give the maximum period for such generators of 5 X 10°. But it is not accept-
able there either. Using xp = 1, we obtained x»° = 4.8, but x5 = 270.8.

' = 90.6 and xs’ = 3.8. In connection with this multiplier it should be pointed
out that it is the only one of the simple, and therefore fast, multipliers of the
form 10° <+ 1 which Is not congrent to 1 {(mod 500).
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TABLE 1. Typical results for multipliers | TABLE 2. Typical results for multipliers
which satisfy the coudition ¢ = 1 (mod!which are congruent to 1 (mod 20). Only the
500). Bxeept for o = 21, all unaceeptable | first one is not acceptable. The results are
multipliers satisfy this condition. The re-|fora; = Oand e = 1,
gults ure for za = 0 and ¢ = 1. The 99 per- i T TTTTT—
cent level is 21.7. @ xg® | xgt
@ xp? xg" 100001 520.8 800.0
e — -_ 100021 4.4 14.%
501 3.4 7.4 100041 6.2 2.6
1001 1 6.0 9.6 100081 10.8 12.8
1501 : 10.8 5.8 100081 11.6 14.6
2001 10.6 17.8 100101 9.8 3.2
2501 96.6 2.8 100121 6.2 6.4
3001 5.2 5.6 100141 | 7.0 10.0
3501 11.8 5.6 100161 | 8.6 5.4
4001 88.4 12.2 100181 20.6 16.2
4501 6.8 11.4 100201 12.2 7.8
5001 193.2 | 1318 100221 5.0 5.6
5501 4.2 | 6.8 : : :
£001 10.9 4.4 100481 10.4 14.4
8501 6.4 9.2 100501 4.2 18.0
7001 9.2 6.6 . :
7501 45.0 13.6
8001 39.6 8.4
8501 10.2 7.8
9001 . 4.4 9.6
9501 1.2 7.4
10001 238.2 124.8
10501 4.4 14.0
11001 1.2 11.0
11501 5.2 24.0
12001 43 .4 22.8

We next consider briefly the effect of changing either x, or ¢.

The value of xs was changed in some of the cases of this section, as well as in all
cases of the next seetion. In general, these changes did not noticeably affect the
acceptability of the results.

The effect of changing ¢ was more noticeable. When a multiplier was very bad
with ¢ = 1, more complicated values of ¢ would almost always cause the results
to improve, but not enough (o make them acceptable. or an example, see
Table 3. We found no further relationship between the complexity of ¢ and the
degree of improvefrmnt. When results were only moderately bad with ¢ = 1,
more complicated values of ¢ would often make themn acceptable. For example,
see Table 4.

Unacceptable results were usually caused by values of the individual xi© and
X being too large. It occasionally happened, however, that xr Wwas unaccept-
able, not becanse of too many large values of x:, but because the values of Xt
were too nearly the same, and similarly with xs . This happened only rarely, but



136 J. L. ALLARD, A. R. DOBELL, AND T. E. HULL

it dees illustrate the possibility of having good local behavior along with bad
global behavior. One usually worries about the possibility of bad loeal behavin
even though the global behavior might be good.

4. Effect of Changing the Word Length

We now consider word lengths other than 10. Oue reason for doing 80 i3 that
there are machines with word lengths 8 and 12, Moreover, word length 8 might
be useful for an algebraic compiler on a4 machine with word length 10, when §
digits are used for the “mantissa’ of a foating-point number. Alzo, with variable-
word-length machines it would be uselul to have generators with as small a
modulus a3 possible In order to take advantage of the shorter generating times
that would result.

For these experiments we concentrated our attention on multipliers of the form
10% 4+ 1, but we considered many different values of ¢ for each muléiplier and
three values of 2, for each generator. Specifically, for each word length L = 6,
7, -, 12, we tried most of the values § = 2,3, -+« | L—1. For each L and §
we took e = 1,3,7,9, 11, 33, 77, 99, 111, - -+, m—1, and for each generator we
w00k three sequences of 100,000 each from the first 300,000 numbers beginning
with o, = Q.

The results were remarkably congistent. Tn gencral, the larger the value of §
e worse the maultiplier, and the smaller the value of I the worse the multiplier.
Speeifically, the multiplier for § = 2 was good for all xp and ¢, and for all values
¥ L with the exception of L = 6 and a few cases for L = 7. The multiplier for
S = 3 was good only for I = 11, 12, although it was only marginally bad for
. = 10. The other multipliers for § = 4, 5, -, L—1 were all bad. Table 5
summarizes the results.

For the sake of completeness we consider one further advantage that mixed
wongruential methods might have over multiplicative ones. Tt has been claimed
hat adding a complicated ¢ in a mived method might scramble the least signifi-
ant digits more than they are scrambled with multiplicative methods. The
wlvantage would be that several parts of one number might then be used sepa-
ately to give several random numbers at once. We have not tested this idea

TABLE 8. Examples which illustrate how

aore complicated values of ¢ ean cause the TABLE 4. Examples which illustrate how
sault for a very bad multiplier to improve. more complicated values of ¢ can cause the
“he multiplier is o = 100001, while zy = 0. result for a moderately bad multiplier to

' become acceptable. The multiplier is
¢ xpt xgt e = 108001, while x, = 0.

: |

1 520.% 900.0 ¢ | xp? 4’ xgt
1t 59.8 786.2 | |
7777 16.4 14.0 1 1 7.4 ‘ 32.0
87281 15.2 159.% 7777 | 6.2 ‘ 6.6
72011267 12.2 836 87201 ‘ 8.2 | 12.0
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TABLE 5. Condensed results for multipliers of the form 10° + 1. Entries are percentages
of x,¢ or x,* which exceeded the 99 percent level of 21.7. Brackets indicate
entries for which the number of cases was less than indicated at the top of the

column.
U ‘
Word lengih L. ... ... [ 7 8 9 10 11 12
N s b T 168 19 26 240 264 28
Multi- | 100 + 1 64 4 i 2 3 | 2 !
plier o] 108 + 1 100 84 73 45 7 1 1
10t 4 1 100 100 &8 76 90 (60} 26
10% + 1 (100) 100 100 89 94 (100)
30% + 1 100 100 100 91
107 -+ 1 100 100 100
18—+ 1 (100) 100
W 41 100

* Rounded from 2.5.

thoroughly, but the results of this section are applicabie. For example, the re-
sults for word length 8 arc exactly the results one would get if one tested only the
third digits of the numbers of word length 10. From the results of this section we
therefore conclude that only the first 3 digits of the 10-digit numbers are reliable,
and this is probably no better than would be obtained with multiplicative
methods. In any event we have not tested for any correlation between the
different digits of each number.

3. The Multiplier 101

The only one of the simple shift-and-add multipliers that has been consistently
good so far has been the one corresponding to 8 = 2, namely 101. It appears
to be reliable for all word lengths L 2 8.

As a final test of this multiplier we decided to carry out the serial test using
only every second number in each sequence of 200,000 numbers and then using
only every third number in each sequence of 300,000 numbers. These tests for
serinl correlations of lag 2 and lag 3 would be of interesl in various applications- -
for example, if one wanted to generate points in the plane or in space. These
tests were performed only for word length 10. But we tried ¢ = 1,3, 7,9, 11, 33,
77,099, 111, -+ -, 10°—1, and for each value of ¢ we used the three sequences
following each other, beginning with z, = 0.

Table 6 shows some typical results. The multiplier 101 has once again turned
out to be acceptable. (By contrast, 1001 was unacceptable, being particularly so
for lag 2.) In these and the earlier experiments, we have deliberately chosen
special values of ¢ which might be expected to lead to patterns in the generated
sequences, if any choices are going to lead to such patterns. Under these circum-
stances the results definitely lead to the conclusion that we can rely on the
multiplier 101 as long as the word length is at least 8.
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TABLE 6. Typleal vesults of the serial test for lags
1, 2 and 8, using diflerent volues of ¢
with the multiplier 101,

=
¢ Jag & lag 2 g faz 3

1 3.8 6.4 ! 15.0

33 3.4 7.2 ‘ 4.6
Tl 12.0 b.4 ' 11.6
GuGHHY 3.4 8.0 I 3.0

A final remark should be made concerning the speed of the shift-and-add
rultiphiers. Generators assoclated with the multiplier 101 will in general be the
fastest of all the poseible mixed or multiplicative congruentinl generators. Such
a generator will ordinarily require the following sequence of insgtructions:
FECCH ¥, SHIFT 2 PLACES, ADD 2, ADD ¢, sTorg 2. The fastest multiplicative gener-
ators are assceiated with the multipliers 10°+3 and 105+ 11, which would ordi-
narily require an extra instriction. However, the relative speeds of different
generators will depend also on the machine itsell. For example, on an IBM 1620
with s variable word length and its two-address Instructions a multiplicative
generator with @ = 10° 4 11 is actually faster (requiring about 2 msee) than a
mixed generator with a = [0t (requiring about 2.5 msec). By comparison, the
generation tume would be about 20 msec 1f a shift-and-add puulliplier were not
used.

8. An dnolytiee! Interprefation

In this section we present a brief analysis which helps to explain the results
outlined above and which supports the conclusions drawn there.

Repeated application of the defining relation (1) yields

(g" — e

:En == anxo + 74&6;‘“' ] (mﬂd m) (2)

We assume throughout that the multiplier @ has the form
a = 10k + 1, kan even integer; (3)

with m a8 power of 10 and ¢ relatively prime to m, this condition is sufficient to
guaraniee that the generator (1) has full period m [6]. Then z; determines only
the starting point m the full sequence characterized by a, ¢, and m, and we may
without loss of generality suppose x, = 0. We take m = 10%, and for the moment
asgume ¢ = 1,

Then the expression for z, beeomes

L—1 ; . R
2, = 2 (j. f 1) E10 (mod 107 (4)

when it is uhserved that no terras having a factor 107, ¢ 2 L, will appear in 4
nurnber of L digits.
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The three principal conclusions which evolved from the results deseribed in
preceding sections were:
(i) sequences associated with multipliers of the form

a = 10° + 1 (5)

display suitable statistical properties only if S is small relative to the word length
L {see Table 5};

{ii) other sequences displaying unsatisfactory statistical behavior are asso-
ciated with multipliers falling in fatrly well-defined residue classes;

(iii) the statistical properties of a sequence may be improved somewhat by
g suitable choice of ¢ (see Tables 3 and 4).

Relation (4) suggests an explanation of the results summarized above. Sup-
pose that the multiplier @ has the form {5). Then (4) becones

x, = ‘z:j (j _ﬁ 1) 10%  (mod 107, (6)

and the index 7 will run only from zero to the largest integer not exceeding
(L —1)/8. Thus if § Z L/2, at most two terms will appear in sum (6). That is,

T, =n+ (’j) X 10°  (mod 10°) (7)

g0 that
Toar = T+ 105X n -+ 1 (mod 10%). (8)

It is not surprising that such a generator is found to have unsatisfactory sta-
tistical properties.

As L/8 grows, additional terms enter sum (6), and satisfactory statistical be-
havior becomes possible. Table 5 suggests that at least four, and probably five
terms of the sum are necessary before even our (minimal) statistical require-
ments are met. -

Rather picturesque considerations suggest that not only the number of terms
in the expansion (4), but also their size and the amount of “overlap” of terms
will influence the statistical properties of the generator. Introducing multi-
pliers of the more general form (3) may have one of two ellects.

If, in expression (3), k has factors relatively prime to 10, then these factors and
their powers remain to “enlarge’ each ferm in expansion (4), thereby creating
“overlap’’ of terms, and thus more effectively “scrambling” the digits of succes-
sive elements of (2.} . Exactly the same argument may be offered to explain why
more complicated values of ¢ tend to improve results somewhat. ¥or f ¢ # 1,
expression (4) reads

= :Z (7‘ i 1) K107 (mod 10"), (9)

and c—chosen always relatively prime to 10-—remains as a common factor in each

term of the expansion.
Tf, on the other hand, & vontains factors which are divisors of 10, these may
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vegularly conbine with the binemial coefficients to create powers of 10—simple
shifts of terms leftwards——which stmplify, and reduce the number of, terms in
expansion (4},

To illustrate these considerations, compare the generators associated with mul-
tipliers @ = 1004 1, a = 410° | 1, a = 710° 4+ 1, @ = 10° + 1. The
corresponding expansions are

10" {mod 10”) (10)

710 (mod 109 (12)

Xy 55

G5

(._’_” )41'10” (mod 107) (11)
(5)

(

) 10Y  {mod 10Y), (13)

For L = 10, expansion (13} contains at most three terms; the corresponding
generator was unacceptable in our tests. (See Table 1.) Expansion {10) contains
four teris and appears to yield (with ¢ = 1) an acceptable sequence. Generators
with @ = 4001 were found to be much worse. A possible explanation follows.

Expansion {11} may have four terms, unless( has a factor 5. Bub the

n
J+1
binomial coeflicient (j _?_ 1) has a factor 5 whenever n 5 4 (med 5}, and thus

the sequence generated by {11) has runs of four consecutive elements out of five
determined by only three terms.

Expression (12, on the other hand, has four terms throughout, each magnified
by a factor of 7. It displays satisfactory statistical properties.

This argument, then, leads to the conclugion that multipliers for which
(@ — 13/20 is relatively prime to 10 may be most suitable. The discussion is not
complelely precise, bui ib does fucus on two obvious considerations affecting the
properties of 4 sequence—namely, the number and nature of the terms in ex-
pansion {4)—which provide a simple and consistent interpretation of the experi-
mental results. It demonstrates convincingly that if m = 107, multipliers of the
form a = 10° 4 1 will generally give poor results unless @ is much smaller than
10“%. Tt suggests that more suitable multipliers may be found among those for
which (¢ — 1) has factors which do not divide 10, along with the fast and simple
multiplier o = 101,

Our tests were designed o isolate generators which did not meet even plausi-
ble minimum requirements. Though we have spoken of many multipliers as
“eood” or “acceptable,” it remains of course to test any of these mare exactingly
to determine their suitability in particular uses.
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