2

Principles of Programming

- Section 11: Additional Programming Methods

EM Personal Study Program

© 1961 by International Business Machines Corporation

" Section 11: Additional Programming
Methods

11.1 Introduction

The presentation of computer coding and programming in this book
has been based primarily on the use of the Symbolic Programming Sys-
tem and Autocoder, in the interest of a unified presentation. The reader
should realize, however, that there are many other programming tech-
niques and systems that serve much the same purposes as SPS and
Autocoder, namely, to reduce the work of initial programming and to
simplify program modification. These other systems also sometimes help
to take advantage of special conditions and to handle other types of
problems than have been illustrated here.

In other words, SPS and Autocoder are good, and are heavily used—
but they are not the whole story. In this rather brief section we shall
investigate a few additional methods of which the reader should be
aware, The discussion will give only a quick introduction to the various
topics. Other publications are available for the reader who wishes more
complete information.

The topics to be considered are: the use of decision tables in system
design; the FORTRAN coding system for scientific and engineering prob-
lems; the Report Program Generator for the production of programs to
write reports; and the coBOL coding system, which is a sophisticated
coding language for expressing data processing procedures. No attempt
will be made to evaluate these various advanced programming lan-
guages, because the whole subject is under such intensive development
at the present time that any evaluation would soon be out of date.

11.2 Decision Tables

Before any coding can be done on a problem, there must be a precise
definition of the procedure to be followed. As we have seen, this defini-
tion of the problem and procedure can easily require more effort than
the coding and checkout which follow, and the effort is usually at a
more sophisticated level. As with any other activity, this work, which is
usually called systems design, requires methods of representing the
actions to be carried out and the conditions under which they are to be

done. In this book we have used two techniques for this purpose: narra-
tive description and flow charts. Various other methods of describing
the work are employed occasionally.

Another method that is coming into prominence is the use of decision
tables. A decision table is a rectangular array of boxes, organized in
such a way as to describe a decision system involving many variables
and many results, The basic arrangement of a decision table is shown
in Figure 1, where we see that a horizontal double line separates condi-
tions above from actions below, and a vertical double line separates the
stub on the left from the entries on the right, The stub contains the
descriptions of the conditions and actions for each row of the table.
Figure 2 is a simple example of a decision table to describe the decisions
in one section of the inventory control case study of Section 10,

The basic idea of using a table is to inspect the decision parameters,
one column at a time, until a column is found in which all the condi-
tions are satisfied. When this occurs, the actions contained in that col-
umn are to be carried out. If a condition entry is blank, then that con-
dition has no bearing on the decision as to which rule (column) is to be
followed. For instance, if the transaction is an order, we don’t care
whether the transaction quantity is more or less than the quantity on
hand. If an action entry is blank, no action is required for the operation
named in the action stub for that row. For instance, there is no quantity
shipped in this example except on an issue.

At the end of the table is ordinarily a line stating where to go if the
table cannot be solved—that is, if no column’s conditions are satisfied
by the input. Following this is the name of the table which normally
should be solved next. If the choice of the following table depends on
decisions in the body of the table, as in this example, a separate row
can be set up to determine this branching.

Even in a simple example like this it may be seen that a decision table
provides a clear picture of the relationships between conditions and
actions, and of the interrelationships of combinations of conditions. The
technique has the added advantage that omissions are explicitly indi-
cated, leading to a complete statement of the procedure early in the
planning.

The decision table concept is much broader than this example might
indicate, extending to such diverse areas as tape processing logic, ac-
counting procedures, manufacturing operations, routine engineering
decisions, and the writing of utility routines. Furthermore, the decision
table concept is not limited to providing insights into the logic of a
system. A suitably standardized form of decision table is also feasible as
a source language for describing data processing procedures to a
computer.

Condition Condition
Stub Entry
Action Action
Stub Entry

Figure 1. Schematic diagram of the parts 6f a decision table

Trcn]s_;:;ion Issue Issue Receipt Order Adjustment
Temection || cqon | > qon

QOH = QOH - TQ 0 QOH +TQ QOH TQ
QOO0 = QOO QOO0 |QO0 - TQ [QOO0 +TQ QOO
cg:?:;iez } Q QOH

GO TO Extend Shortage Reorder Reorder Reorder

If unsolvable, go to CODE-ERROR

Figure 2. Decision table to describe an inventory control procedure

11.3 The FORTRAN Coding System

FORTRAN is a source program language for expressing problems in sci-
ence and engineering, together with a processor that translates the
source program statements into an object program that can be run on
a computer, In contrast with SPS and Autocoder, the source program
language has virtually no relation to the object program language. In
fact, the FORTRAN user need not even know how the computer operates
in order to write a program.

An example will show the broad outline of the language. Suppose
that an engineer wishes to find the current flowing in an AC circuit,
for frequencies between 1,000 cycles per second and 2,000 cycles per
second, in steps of 50. Assume that the circuit and the operating condi-
tions are such that the current is given by the formula:

N I = E

Rz + (27FL—W) -

where I = current, amperes
voltage, volts
resistance, ohms
inductance, henries

capacitance, farads

Il

I

I

I
E
R
' C
F frequency, cycles per second

It is of course possible to program this calculation for a computer
using machine-language instructions, and a great deal of work of this
type has been done in recent years. However, doing so requires the
engineer to know how to program, and involves many computer con-
siderations that really have nothing to do with the problem being
solved. ,

FORTRAN makes it possible to state the procedure to the computer in
a style which closely resembles ordinary mathematical notation, and
which requires virtually no computer knowledge. The program for this
computation is shown in Figure 3.

It may be seen that variables are given names in the same general
fashion as with SPS. In this program we have used the units in which
the quantities are expressed as their names.

it
il
!

85

Pl T !

T

I

ST I I
Ml VU G BT i
sl b

Page

JRTS ST T S
PSS I U SN N A

TSI S BRI S SEN S W
s

PIRFRRTE TS N N U WS T S S)

Pl
L

55
28%CYCLEXFARAD)) %%2)

NI S AU A BT A G S |

P S U TN TS T IS NS0 S B B B ¥
PRI I ST I ST AR A A

L1l
ST R

P N S A N S O T B G S N 'Y

P S B

L

P AU S

LB

a5
[T ST AN G AT AT AN U U SN A A AR GV

PRI BRI BN TSN Y ST ST S SIS TV NN S S S I

PN B |
PUR TS UNN N SN T N U OO0 OO0 SN [N S T T W U T D AT S B 1

PRSI S U U NN SO U I U 1 S U T

MU U AT Y
[ENEE VAT IE SN AT AT IV AN B ErEU IS EVEE SrRE T I A

40

i ICIchlLAEIII IAnMxpn Pl

20000, 50, 49, %90 ..,

Identification
FORTRAN STATEMENT
A

s

n

[T SR A
PRI B ST AT U U T SAVEN N S S N U 0 S U U S A |

PRFSNN T TA R N0 SN S T SN S MU S U Y

FORTRAN CODING FORM

IS IS IR EN ST ST AR AR N
A BTN EPE INTNSTE S IS T ETET ST ST A S S
I IV T S A0 OO SN Y T 0 I3

25
LI AHIEANIRIYIVI AFAAIR.AIDN

P Y

TR0 W00 N S TS AN U 50 VAV S T U G TS T 0 W U T T S S U O W S OO O W I O Y

P

P I GRS N ST S AN U ST G S U S G I S TSI S KA E0 W U0 U U0 TN S W AT S SV (AT SO0 10T S A I R N 'S

TS ST RN SN BTSN S U SIS S U E U ST S U U BT SR S U0 U A S G 0 B

sl iy

L

COYCLE v B0y e b b e ey

0N VN S NV N AU U S S5 N0 I AU TN T S N T A T [T TS WS (U0 0 N0 SO0 5 WA HT T T S S T W A0S0 VN0 WO [V T 0 U U0 Y SV U0 S B
U SV VIS U S0 0 W S A ST ST U A SN SN A U VOO0 S T WOV U AN U S N N W Y S U (0 S0 T N N [ST U0 UV 10 VOO0 S T S S S ST S (NI S WU (N S S S G0

U A ST W S0 I S VUVINT SR O ST ISP TN T U U UV S S T YOUD Y WO O O S T Y 0 Y 0 U 0 VO Y0 W O T B

IS Y VO 100 T T U S S WU AR U NP UN A Y SO S JN S S A T [S S T R

PRTIN IR W S SIS T ST EPUNNSAT SRS NS0 NS SRS STEN N T S

READ),, VOLIT,, @HM, HENRY, FARAO , vy oy iy 1y v b ey il i1y

CYCLE = 0400000)\ v v o v v i
43‘9 AJM.P.’N.O.L.T.’ls.Q,R.TlFl(Q H MX% % 2"“(|61. ‘2‘8‘*’C1Y CLE *IH»EuN‘R‘YI—,i -

T S 0 T S U AW AT DO T8 T Y 1 N S
PR SRT U 00 TN T S SN N S0 WA N O I T 1
FURTSETN [0 WA U0 U VA N S S T DS S SO Y Y

PN I ISR BT R

60, T@ 39 1,001y

PRINT,, VOLT . OHM
L40|ISTOP,) v

TFOCYCLE

NI BN RS B
P N I ST S A1

END 40 v 00

s SO CYCLE |

[—— € FOR COMMENT

¥ STATEMENT[S
NUMBER |8
1
b 1|
T
T
N
L
L
L
TR
L
s
L1 1
L
PR
11 1.4
111
T

Checked By

Program
Coded By

Figure 3, A FORTRAN program

——

The READ statement calls for the four data values to be read from a
card. The next statement establishes 1,000 as the initial value of the
frequency. Statement 39, which is given a statement number because
it will be necessary to return to it, calls for the actual computation. We
see here the use of symbols to specify arithmetic operations, according
to the convention:

Addition ‘ L+
Subtraction -
Multiplication *
Division

Exponentiation =

We see also that the square root is called for simply by writing the

name SQRTF. When the FORTRAN processor encounters this function
name, it will incorporate into the object program a routine to take a
square root. The FORTRAN programmer never has to know how to write
the 15 machine-language instructions by which square roots are usually
computed, or even know what the method is.

The pRINT statement leads to object program instructions to print
the input data and the results. The next statement is the FORTRAN
equivalent of a conditional branch. The effect, in this case, is this: If
the frequency is less than 2,000, go to statement 50 where we set up the
next value of the frequency, but if the frequency is equal to or greater
than 2,000, go to the STOP statement. Statement 50 is another example
of an arithmetic formula statement, This is not an equation, but rather
a command to FORTRAN : Replace the value of the variable named on the
left with the value of the expression on the right. The ¢o To 39 creates
in the object program a simple unconditional branch.

FORTRAN is an example of a procedure-oriented language; that is,
the language is used to write a problem-solving procedure in terms of
the method to be followed. As we shall see, cOBOL is also a procedure-
oriented language. This is in contrast to programming systems like
SPS, where the procedure must be described more in terms of the
machine operations to be executed, and which are therefore called
machine-oriented languages. Procedure-oriented languages have a num-
ber of advantages:

1. They are generally somewhat easier to learn and use than machine-
language coding systems. The beginner does not have to know anything
about how the machine operates in order, for instance, to take a square
root: he simply writes sQrTF. This advantage should be kept in per-
spective, however. It must be remembered that getting a problem solved
with a computer involves many activities besides coding. The use of a
language like FORTRAN or COBOL in no way reduces the careful plan-
ning that must go into getting a correct problem statement, or deter-
mining the best approach to the solution, or planning a thorough set of
test cases, or documenting the program. What FORTRAN does, actually,

is simplify the job of coding so the programmer can concentrate on these
other things.

2. Program modifications are easier to make, because of features
designed into each of the languages. In the case of coBoL, it is because
the description of the procedure is kept rigidly separate from the de-
scription of the data; this means that one can be changed without hav-
ing to rewrite the other.

3. The procedure statements are to a large extent independent of the
machine on which the object program will be run. The FORTRAN pro-
gram in Figure 3, with a few modifications, can be compiled and run
on any one of a dozen or more different computers. The object programs
for the various machines would be different—Dbut the source program
is largely independent of this fact.

FORTRAN has the desirable characteristic that it is attractive both to
the beginner and to the expert. To the beginner, FORTRAN offers the
advantage of ease of learning and the quick solution of simple prob-
lems. To the expert, it offers faster coding, ease of modification, and
machine independence.

11.4 The Report Program Generator

The desirability of simpler ways of programming is of course not re-
stricted to scientific computations. The Report Program Generator is
one of several systems that provide much the same advantages for com-
mercial data processing that FORTRAN does for scientific work. Using
this system, the source-language user once again does not have to know
much about machine-language coding. The procedure is stated on four
types of forms which provide answers to the following questions:

1. What are the characteristics of the file from which the data to
appear in the report is obtained ?

2. What type of information is to be extracted from the file and from
what records may these source files be obtained ?

3. What type of calculations are to be performed during the execu-
tion of the object program and how are the results of these calculations
to be manipulated ?

4. What will be the format of the report? What headings and con-
stants must it contain? How should the data composing the report be
edited ?

These questions naturally must be answered in setting up any pro-
gram. Using the Report Generator, however, the answers are presented
to the computer on four types of forms that require no computer knowl-
edge to fill out; the generator then takes over and produces an object
program, The four forms are shown in Figures 4 through 7.

A

w0} suolpdyldads indul sojpssusgy woiboig odey ¢ 2inbiy

AT T TT .
/ / i T 77
ddd.jq LI I i S \]‘ T — T T J 7(\\
o_ﬂ_o T T T7T T T T TT T T T T T TT T T T LI
e S0 t i " Te[alnjo's o[[1]vTv(o
050 golg'e ole'olz'c'oc'0l s’ 0fv'0 m o i " T1v[dl Jo"8oM[o] [e's'o] T1]e"alo
Te ¢ T T T
0'¢'o T T T T T T 1 m.om_m_o m_ON_m_Om_O m_m_quO T T TT T vla O_m~030 m_m_O _mﬂmo
T T, T
el T TTTTITITT[T T |c'opeole'oleeole'0 s '€ 020 T T o B EERCEE EEREEE NUEER
O___o T T T T T T T T T m_om_m_o m_o N_m_om_o mj_‘mqo _.o T 7T T T 7T TAaT Tl
0| |o's’ol-[ZINg's'o] [1]g'8]D
USLY, h.lwh_u co]h 9 o.l 19 6 Qn‘lhwo 5 mcu $ o&nlt.lstov "—m;hw_'smmmm wnnnvnlﬁmnwn of] rzjoz ejLisnsiy) 20168 HOKCEID
El 3|2 2|5 22| B8] 2|2 B |sgsl= sld= =L foid|e 3 H
Wi = = £ 2 2 = SS(S/[S|wisod S T Sikonisoed Eworisod S(TS noisodS T IShorsod S E 038 |2
i 907314 | 60134 | a1313 [€ 07313 [201303 |) avais [BE[] 1 tl] =
" —
$G7314 10HINOD g $3000 Q¥003Y 3ON3NO
Q5003
340
o a Aq pawwoiboid
#© 7] ~oc¢ sod
o SNOILYDI41D3dS 1NdNI 4000y
9EEL-6TX
£
enamtng- + gy
p . i — wiog §n0Any J0jpIdUan woIBoIy fJoday *p ainbiy
T Tt o= T T Ty - —
s e :
L] s
m § | IEpROrOVe 3V I VI M :
AAREANNRANENN TS
HASAERRARHAN g] [Te L
b L2 o=
0t N T . B
W e T 160 . :
«ShE N L]
1] y Huild 2R E . :
| 11 1 q “TH FH | o -
i o | [OHCEH |2 o -
_wrmm.r 1 COHRER |5 * :
T nill FBHTEEH |3 M 2
%z.o_umw_m!ﬂ&aiya.rrrrf Zel T TgrTzen |2 * z
SERNs ¥ . -
WO TILo st TR WM 11T [[[3;] : :
H_U ,..‘ +1t t11 Emad -vTvx -+ L] ”
g m_amm;m,ﬂ%mm@@ww@?ﬂa@wﬁ%@aA@E@ES g&i%a;_a.a:@ _,,,.w.%ﬁnﬁ&%@%@;%a._w%%5a %L%EE%@%::: . =
LT B A i ol 6 g 9 1 s v | ¢ z 1 o an1o
T O T O O T O o T T T T T O O T T T O T O T T T T T T T T T T T T T T TP T T TTT TR
NS AERSRSENEENEESEENSRESRANENEEIRREERNASI0REERENE NS ASEENNENSEJNAENENERINNIEENINSRSENENEREAERENSEESUNEIRENENENNERANRERNNAGUEANEEE! 2
P
ISR EINENSANANNEESENENESSNANIENEEFEARNGNARRENEEENRENAANSRNEEESESNSSRNNEEIRNANERNSREES NN NN NN RSNEAESERERSEREGERENERENARERREEAN mWWMM
) sille
T T O T T T OO T T T T O T T T T O T O o T O T L T T T T T T T AT T T T T T TT TR FTTTTT MMWMM
Sas»
NS NARNSREANEEE RIS A RENESNGENNESNARESISNEEEEENUSSASNNINE R IENNEESSREESEENRINNRRRINNREREERSERENSAEEESARECIARARESRENESRINUNBEEAR] ANmm
:::,::_:___________::_:______::::____::::_:_::____::::_::_::::_:w_:_:::::::::_:___:::: 2
TTTTITITT |BNSENEEEEESAONANENRENIESENS NI ENEENNSARENENSEEEREEENINERENSINSREEENAASEEANEENENENNS N0 NSNS INNNSGENSRE NG NESUEN!
TTT17 TTTTT |INANSEANSEEREREENSEEA AN RAREEENENASAGREEESERNSRENSERENENGNEEENSEREREEENREANAEEEEESUNSENNENNNNEENEEIDEARAREEE]

WA NI Q3N YILNIEd €ovL YW Geom/somavIN aTM

. L¥VHD ONIDVIS WILSAS ONISSIDO¥d viva lovi

i

w104 suoiDIYIIAds UOLDINJOD JoJnIBUBD wDIBosg (ioday ‘/ ainbyy

\ L T — \l.\\\J’I./I \
0w T T L L N A N L | T T _\“\ T * T _F T V]\ 1 \IN_“_J T T T J T T 7T]
an_o TTIrJ 1 rrr 111717 T 71017 T T T “ T “ T “ T 1 T 11 11 T 1 T 11171 T T T T LB S S |
0@—0 Tr1r 1 17711 rrJrrrryrr 1117 T T T “ T m T “ L 7T 1T L T 7 17 T T T T 1 T 117
Oﬂ__o T 1 1 11 o1 1P T T Ty v i T T * T 1 T “ T rT 17 71 T 1 T T 1T 1 ¥ 1 T T T

L 1 L
s vnnmdmn .nunQnm.”mv ovlSy Ev2b Op6L[8E Onnneax%..h_(x-ww“a ogl6gez 9as2 oa..au:“wﬂca mu “_.W_-unc “_.nﬁ_u“_uo_ L 173 Ndﬂ.
=3 i 40 0N G emiglom|—
— Ziz20 [ofEcz| wswo |/Bo= owomg mmmmmwmmmm1i
owrd Z | = (3] w02 N W02 §'0H03 [§ SEC) v XSS omnanm (S2 EEFREE s INUN v
m W ¥ Y Vm +[BST mm.o_ a13i4
a | | [§] 2 woiova 3 1 woiovs SNivis 01314
240Q : Aq pawwniBoy,
s , d
0 T aboy jioday
: SNOILVYDI4103dS NOILYINDIVD
HOLVYINID WYUI0Hd LHOd3YH [0] g1
BEEI—62X
B s s S o ‘ ' l‘\ - -
wJoy suoiypayrdads jndino Jojpisusg woiboid oday ‘9 dinbiy
\\111 T T - ™~
[1 1 } j.!_ T
0 &-«_ T 19 1 7 0T <*H*_Q,DAG_OAQ_Q_-_Dﬂaﬁn_.ﬂqogw Nl. __o TV L ¥ m_\l_o _I_<<~Z.H_u TT T 7 T T T T T hh
Onw: ™ T T T T 7T 1 117 1 1T T 1 _n_-_s_._._a_Z_H_.m N,O_O T “ T “ “ N_V_o T T 1T T “ T n T " T T V_
TeaT T T T T 1T 1T T 11 71 1 T T T “ \f T " Tl T T 7y vy T “ T “ T “ T T T
0's'l Z LS80 3'iva . 4
O_Q__ T 1T 1t 11117177 T T T 17 17 3 1 10 °tT T 7 “ T “ T " 7 T 1T 1T 17T T “ T w U_J_ T v_ﬁv T T xx<<.FI_
o<ﬁ._ | L L LA DA AR ™71 17 1 11171 177 T T " “ T m mﬂ N—o 8_24m*o_<_& T w T T “ T H T &
0 N_ | Tr 11171 _a T T T T T T 1T 1 111 o7T T T T T “ “ T “ AVa\l_o mﬁw_m_s_o_z_— T ” T “ T “ T T T T u
) __ { | I A . O S L L L S R AR T 171 17 771 LR “ T “ T “ VAN_O s_-_._o_J_s_m T “ T “ T “ T T T T u
O_O__ ™ T r1r1rr7r1 1 17T T T 11171171 177 T T T w T “ T “ T T T T T T “ T “ n‘_e“ .v_o _ﬁo T T xquJ
oTeTo] T T T T T T T T T T T Walq ol a Tela'gliTof [m . ” ' “. Z'80o[LWv1dl| ” k “ _ m T 1] g
gl T T T 71T 111 1rrrld T 11T 1 T 0alTal ATNT TAT LS T 1 T T T4V, Tr1riTT L T7 T T T T T
0'8'0 1'@'1'"a’'AN'T{2°0'0 , 60 . b
] } { i
O\._O _____w._____ﬂ_ﬂ____«ﬁ__ag T LR MH T LI 1T 11T T _-N_u_ __O T T T M NENE
owdo | It I S T O L DR LR LA L _D_Dﬂ.—o_ﬂ_n._:_n mﬂo,o T “ L T “ __m_on_'_z.j_s_z_q T n T “ T “ T T T T m
0 m—O TT T 7T 17T 1 1111 1T T o1 17 AQ_D_Q_O_DAD w_oA T “ T * T “ mam_o AU_U_H~1_Q T a—‘ T “ T “ T T T T m
) ¢~O | S S R R UL A T Trr1 111 1T T T “ ! “ T “ O_Oﬁom_a_m_<_ms 1 m T “ T “ T T T T m
0 n_o TT T 171711 1 117 ™7 T 1 11t 1 771 T T N T “ T " T " mam_o>_.ﬁ_2_<_3_o T “ T « T " T T T T m
OAN_O T r17 T 17T 75111 11§10 Trirr1rr1r 1T 7T L T “ T » T ” m_»VAO H_mdo_m_mao T “ T “ T “ T T T T m
o'170 T 1T T 1T T 11T T rr 117 77 T T T “— T m T m N_ __O S_Z_E_M_P_H T m T m T m T T T T m
8L|SL 1glos sylivey pYEP ivior egle sdve 2 9qse cdzz oeler ulon sifer ezt njore|efi|ois]r [A KA B
HIONITE | -avon o-aneo § J Q0 == x| 2 ==lEEERRE
2| . p . . . 213|322 ESREEEE m. v
LELLTL TRETTI S ozooa ozcoaozoo NS IWTN aNOY a aNOD a ON0D = 22|22 PP mmum.u M
0¥y v $ | | a131d| @134 | | = Y
3
2 snoILINOD SNOILIGNOD W 0
QHOM TOHLNOD 1103 HO LINVISNOD 2| L AaLno ai3i4 LNdLno 3N diNS | 30¥dS | yay nding NN 14
ajog
uO LL 9L OQDL

11

10

This system applies to any task that involves extracting information
from a file, summarizing it, performing calculations on it, editing it,
and printing the results. For the purposes of this discussion, a “report”
is just about anything that can be printed on a printer: a sales summary,
a payroll check, an earnings statement, an invoice, a customer bill, etc.

11.5 The COBOL Programming Sysiem

CoBOL, which stands for COmmon Business Oriented Language, is a
procedure-oriented language for stating procedures in business data
processing. As such, it shares the advantages of procedure-oriented
languages stated above in connection with FORTRAN.

A COBOL source program is composed of three sections:

L. Procedure division: the procedure statements that specify how
the data is to be processed.

2. Data division: description of the format and organization of the
data and results.

3. Environment division: a description of the equipment to be used
"~ by the object program.

These three divisions are separated in writing the source program,
which leads to one of the major advantages of cOBOL and languages like
it—namely, that changing the procedure does not require changing the
data descriptions, and vice versa. Considering that in most programs
for commercial data processing the object program and the data ar-
rangement are strongly interrelated, this becomes a sizable advantage.
In the frequent situation where the data arrangement must be changed
slightly, it is necessary only to modify the data division and recompile.
This is in contrast to the situation with actual machine-language coding,
for instance, where in extreme cases a single added digit in the data
can force reprogramming most of the problem.

The independence of the procedure and data divisions leads to an-
other major advantage of coBoL, which is also shared with FORTRAN
and a number of other systems: machine independence. With rather
minor changes, a COBOL source program can be compiled for running
on any computer for which a coBoL processor exists. The data division
does depend somewhat on the object machine, to take account of such
machine characteristics as variable vs. fixed word length, the handling
of signs, and tape formats, It usually turns out, however, that changing
the data division is far less work than rewriting the whole program, and
the relative machine independence is in fact achieved.

Procedure statements in coBOL are written in a form closely parallel-
ing ordinary English construction. In fact, a completed cOBOL program
can in some cases be read like an English description of the procedure.
There is, however, very little flexibility in the way the “sentences” can

be written. English language readability is an advantage of cogoL, but
a secondary one.

12

11.6 Fundamentals of COBOL Programming

To give a little better idea of what programming is like using pro-
cedure-oriented languages, we shall consider a little more fully the char-
acteristics of one of them-—namely, coBoL. This will be done first with
a series of short examples that will introduce the fundamental ideas, and
then the inventory control program of Section 10 will be rewritten in
COBOL.

The central feature of a billing procedure is the multiplication of
unit price by the quantity sold. A sentence in a COBOL program to do
this could be as shown in Figure 8. In this sentence, the word MULTIPLY
is a verb. The sentence, furthermore, is an imperative sentence. When
the COBOL processor translates this sentence into actual machine instruc-
tions, it will create the instructions necessary to bring about the action
specified by the verb.

01 MULTIPLY UNIT-PRICE BY QUANTITY GIVING TOTAL-PRICE.

Figure 8.

As can be seen from the example, a COBOL sentence is very similar
to an ordinary English statement in construction and format. Actually
the parallel extends to some aspects of punctuation. A COBOL sentence
must always end with a period. Data is referred to by name, such as
“roTAL PRICE.” We notice immediately an exception, however, in that
words which are to be considered as combined in one name must be
hyphenated, because in coBoL a blank space always indicates the begir.l-
ning of a new word. Furthermore, although it is not apparent from this
one example, the structure of a cOBOL sentence must follow very pre-
cisely the rules laid down in the cOBOL manual. It would not be possible
to rewrite this sentence as THE TOTAL PRICE IS COMPUTED BY MULTIPLY-
ING UNIT PRICE AND QUANTITY. This would be the English language
equivalent, but coBoL would not accept such a sentence. We shall not
attempt to give the precise rules for forming each type of cOBOL sen-
tence; this information may readily enough be obtained from a coBoL
manual.

For a second example, consider a part of an inventory calculation.
One sentence of the coBoL procedure for determining whether or not to
place an order might be as shown in Figure 9. The first word “REORDER-
ROUTINE” is called a procedure name. A procedure name provides a
way of referring to the sentences that follow.

01 REORDER-ROUTINE. IF QUANTITY-ON-HAND IS LESS THAN

02 MINIMUM MOVE ORDER-QUANTITY TO PURCHASE-AMOUNT.

Figure 9.
13

The sentence illustrates a conditional expression involving a simple

relation between two quantities. If the quantity on hand is less than the

reorder point, the action specified following the conditional clause is

carried out. If the quantity on hand is not less than the reorder point, No
the action is not carried out. Figure 10 shows in schematic form the

structure of this sentence. A conditional clause, which is introduced by

the word 1F, in effect asks a question to which the answer must be yes Figure 10.
or no. We shall speak of each relation involved in a conditional expres-
sion as being true or false, or satisfied or not satisfied. This example -«
uses the Is LESS THAN relation, The allowable relations in coBoL lan- : Long Form Short Form
guage are shown in Figure 11.
The example in Figure 9 also shows a different command, MOVE To. . ISEQUAL TO EQUAL TO
The action called for is the copying of information within storage. The
information named ORDER-QUANTITY is to be copied and called PUR- IS NOT EQUALTO NOT EQUAL TO
CHASE-AMOUNT.
It is probably apparent by now that certain words have special mean- 15 LESS THAN ' LESS
ings in COBOL language: In the present examples, the words IF, THEN, 1S NOT LESS THAN NOT LESS
MOVE, T0 and the phrase 1s LEss THAN all have special meaning, and
confusion would result if we tried to interpret these words in any other IS GREATER THAN GREATER
way. Such words are a fixed part of the language and are called reserved o
words. A complete list of the reserved words in coBoL language may be - IS NOT GREATER THAN NOT GREATER
found in a coBOL manual. Reserved words must not be used to mean Figure 1.
anything but what coBoL defines them to mean.
To introduce a few more features of coBoL language, we may use
& common payroll example as shown in Figure 12. 01 IF HOURLY AND HOURS-WORKED 1S LESS THAN 40
The conditional clause in this example is different from what we
have seen previously. The first part of the clause consists of just the : 02 GO TO GROSS-PAY, OTHERWISE GO TO NET-PAY.
word HOURLY, which is called a condition name. HOURLY is one of the
possible values which can be taken on by the implied data name pay- Figure 12,
ROLL TYPE, the other values being EXEMPT, SALARIED, TEMPORARY.
Since there are only a few of these conditions, it is convenient for the
programmer to use his normal terminology. The actual machine in- 01 3 PAYROLL-TYPE
structions are set up to work with the coded representation of these
values, for instance, the numbers 1, 2, 3 and 4. Some way must be pro- 02 88 EXEMPT VALUE IS 1
vided to correlate the condition names with the corresponding values. ‘
Establishing this correspondence is one of the many functions of the 03 88 SALARIED VALUE IS 2
data div.ision..Figure 13 shows the appropriate part of the data division 04 88 HOURLY VALUE IS 3
to establish this correspondence. . .
PAYROLL TYPE is defined as a level 3 entry, which indicates its rela- 05 88 TEMPORARY VALUE IS 4
tive importance with respect to other elements of data. EXEMPT, SAL-
ARIED, HOURLY and TEMPORARY are named as the four conditions, and Figure 13. .

the code number used for each is given. Thus in this example, the value
of PAYROLL TYPE is 3 whenever HOURLY is meant.

14 . 15

The second part of the conditional clause is:

HOURS WORKED IS LESS THAN 40

In this case, the value of the data name HOURS WORKED is compared
with the number 40; 40 is not to be interpreted as a data name but lit-
erally is the value of 40 itself. We speak of 40 as a numerical literal.

The second part of the conditional clause is joined to the first part
by the reserved word Anp, which specifies that both the first and the
second part of the clause must be satisfied before carrying out the
operations that follow the conditional clauses. This is shown schemat-
ically in Figure 14, which emphasizes that both parts of the condi-
tional clause must be true before carrying out the action. If either or
both of the parts is false, the action specified after OTHERWISE is ex-
ecuted. If the sentence is written without the word OTHERWISE the pro-
gram continues with the following sentence.

In the coBOL sentence under consideration, the action specified is a
new command, 60 T0. The 6o To command makes it possible to get out
of the one-after-the-other sequential execution of sentences and instead
execute next the sentence named by the o To.

The fourth example is based on a part of an inventory control calcu-
lation. Assume as we have previously that there are just four types of
transactions—recounts, receipts, orders and issues. The part of the job
that we wish to consider is how to take action appropriate to the type
of transaction. The program shown in Figure 15 is a little longer than
the previous ones but most of the ideas are already familiar.

The first line of this program brings into play a processor command

NOTE INVENTORY RECORD MAINTENANCE

NOTE indicates that what appears in the rest of the sentence is infor-
mation for the reader of the program; is not for the COBOL processor,
which ignores it. The programmer is permitted and encouraged to use
notes freely in order to make the program more intelligible to the
reader. These play the same part as the comments in SPS and Autocoder
programs.

The 6o 10 shown on the second line is a more powerful form of the
command than we have seen before. This is called a selective co TO.
For any one transaction, only one of the four procedures named in
parentheses will be performed. The one selected will depend on the cur-
rent value of the transaction code, which can be from 1 to 4. These
numbers correspond to the names within the parentheses. If the value
is 1, the first name will be selected, etc. This is summarized in Figure 16.

An assigned 6o To provides a multiple branch or switching point.
Lines 4 and 5 of Figure 15 illustrate another coBoL verb, namely,
SUBTRACT. The SUBTRACT verb may also be used in the form:

SUBTRACT TRANSACTION-QUANTITY FROM QUANTITY-
ON-HAND GIVING QUANTITY-ON-HAND

16 ‘ "

Y
F... 2 o+ AND ...

Yes THEN |—

»OTHERWISE

'

Figure 14,

o

ko

01 NOTE INVENTORY RECORD MAINTENANCE

02 GO TO (RECOUNT-ROUTINE, ORDER-ROUTINE, RECEIPT-PROCEDURE,
03 ISSUE-PROCEDURE) DEPENDING ON TRANSACTION-CODE.

04 ISSUE-PROCEDURE. SUBTRACT TRANSACTION-QUANTITY,

05 QUANTITY-ON-HAND. PERFORM REORDER-CALCULATION.
06 - GO TO NEXT-ITEM.
Figure 15,

If the current value of
TRANSACTION-CODE is

1

2

Then GO TO:

RECOUNT-ROUTINE
ORDER-ROUTINE
RECEIPT-PROCEDURE

1SSUE-PROCEDURE

Figure 16.

17

In the condensed form used in Figure 15 the meaning is exactly the
same as this—that is, the value corresponding to the first data name is
subtracted from the value corresponding to the second data name.
These are the only two ways the SUBTRACT verb may be used.

The last line of Figure 15 shows another type of transfer of control:

PERFORM REORDER-CALCULATION

The PERFORM verb may be thought of as meaning “go to the place
named, do whatever it says to do, and come back.” In our case, it is
used to transfer to a procedure named REORDER-CALCULATION and to
set up a return path so that after executing the procedure, control will
return to the sentence immediately following PERFORM. PERFORM thus
provides the facilities for a subroutine linkage. After performing the
reorder calculation, control will return to and execute the Go To NEXT
ITEM sentence in line 6.

As another illustration of the use of COBOL we may use a savings bank
procedure: updating an account record to indicate interest payment.
The program might be as shown in Figure 17, Line 1 shows again the
use of a procedure name to provide a named point to which the program
can transfer. In this case it precedes a slightly different type of condi-
tional clause. Instead of simply comparing two values as we have before,
the programmer has indicated that he wishes to see whether the value
of an arithmetic expression (.03*PRINCIPAL) is less than a numerical
literal (1.00). The asterisk is used to indicate multiplication. It is quite
valid to incorporate an arithmetic expression within a conditional ex-
pression. For clarity it may often be desirable to use parentheses to
denote the beginning and end of such an arithmetic expression.

01 INTEREST-CALCULATION. IF .03 * PRINCIPAL IS LESS
02 THAN 1.00 GO TO END OTHERWISE MULTIPLY
03 PRINCIPAL BY 1.03 GIVING ACCOUNT BALANCE,
04 MOVE 'INTEREST' TO ACTION

Figure 17,

There is one other new point to notice in this example. On line 4 we
have:

MOVE ‘INTEREST’ TO ACTION

The quotes indicate that the word INTEREST itself is to be moved to
the area named ActioN. Thus, INTEREST is identified by the quotes
as being an alphameric literal.

18

There are six verbs that handle all our input-output problems. In
terms of the 1401, the verb AccCEPT calls for data to be read from cards.
This would normally be written in the form accepT data-name FROM
CARD READER, where we would write the name of the card record for
data-name. Printing and punching are handled by the pIsPLAY verb.
Here, we write the word pi1sPLAY followed by the names of the data to
be printed, followed by the word upoN, followed by the word PRINTER
or CARD PUNCH,

The verbs oPEN and cLOSE have the same meanings that they have
in the Autocoder Input/Output Control System. That is, oPEN checks
labels and positions tape to read the first tape block. cLoSE handles the
trailer label and rewinds the tape.

The coBoL equivalent of the Input/Output Control System GET is
called READ and performs exactly the same functions—that is, it makes
available an input record either by advancing to a new record if records
in the block remain to be processed or by actually reading a tape block
if all the records in the input area have been processed. The routine
compiled from the READ verb performs the same error checking and
checks for the end of the file. We specify in the source program what
should be done if the end of the file is reached, by writing the words
AT END, followed by any imperative statement.

The coBoL equivalent of the Input/Output Control System PUT is
called wRITE and performs the same function, We are not required in
using READ and WRITE to be concerned with whether the object program
will use indexing or a work area, and similar matters. All such consid-
erations are handled by the coBOL processor.

Examples of these verbs appear in the program of the next subsection.

This has by no means been a complete exposition of the coBoL lan-
guage. It is hoped, however, that this discussion, together with the ex-
tended example which follows, will provide some insight into the nature
of cOBOL programming and its advantages.

11.7 COBOL Program for Inventory Control
Case Study

Figure 18 is a coBOL program to carry out the operation described in
the block diagram of Figure 1 of Section 10. Since the program is writ-
ten in English it is largely self-explanatory.

19

01 PROCEDURE DIVISION.
27 TRANSACTION-QUANTITY TO QUANTITY-ON-HAND.
02 OPEN INPUT OLD-MASTER-FILE OUTPUT NEW- -FILE.
, TPUT NEW-MASTER-FILE 28 SUBTRACTION-ROUTINE. SUBTRACT TRANSACTION-QUANTITY,
03 ACCEPT TRANSACTION-CARD FROM CARD-READER.
29 QUANTITY-ON-HAND. MULTIPLY UNIT-PRICE BY TRANSACTION-
04 MASTER-READING. READ OLD-MASTER-FILE RECORD AT END GO T
CORD AT C. 30 QUANTITY GIVING TOTAL-PRICE. ADD TOTAL-PRICE,

05 WRAPUP-TEST.
31 YEAR-TO-DATE-SALES.
06 COMPARISON. IF PART-NUMBER OF OLD-MASTER IS GREATER THAN *
32 REORDER-ROUTINE. IF QUANTITY-ON-HAND + QUANTITY-ON-ORDER
07 PART-NUMBER OF TRANSACTION-CARD GO TO WRAPUP-TEST.
33 IS GREATER THAN REORDER-POINT GO TO LAST-CARD-ROUTINE.
08 IF PART-NUMBER OF OLD-MASTER IS EQUAL TO PART-NUMBER OF
34 MOVE PART-NUMBER OF TRANSACTION-CARD TO CARD-1. MOVE
09 TRANSACTION-CARD GO TO CODE-TESTING-ROUTINE OTHERWISE
» 35 MASTER-CODE TO CARD-2. MOVE REORDER-QUANTITY TO CARD-3.

10 GO TO MASTER-WRITING.
36 DISPLAY CARD ON CARD-PUNCH.
11 CODE-TESTING-ROUTINE. GO TO RECOUNT, RECEIPT, ORDER, ISSUE
37 LAST-CARD-ROUTINE. IF LAST-CARD GO TO REPLACEMENT-ROUTINE.
12 DEPENDING ON TRANSACTION-CODE. MOVE 'BAD CLASS
38 ACCEPT TRANSACTION-CARD FROM CARD-READER. GO TO
-4 13 CODE JOB HALTED' TO MESSAGE.
3 39 COMPARISON.
314 DISPLAY MESSAGE ON PRINTER. STOP 1.
40 REPLACEMENT-ROUTINE. MOVE HIGH-VALUE TO PART-NUMBER OF
15 RECOUNT. MOVE TRANSACTION-QUANTITY TO QUANTITY~-ON-HAND.
41 TRANSACTION-CARD.
16 GO TO REORDER-ROUTINE.
42 MASTER-WRITING. WRITE NEW-MASTER FROM OLD-MASTER. GO TO
17 RECEIPT. ADD TRANSACTION-QUANTITY, QUANTITY-ON-HAND.
) 43 MASTER-READING.
18 SUBTRACT TRANSACTION-QUANTITY, QUANTITY-ON-ORDER.
44 WRAPUP-TEST. IF LAST-CARD GO TO CLOSEOQUT. MOVE '
19 GO TO REORDER-ROUTINE.
45 'FILE OR DATA ERROR JOB HALTED' TO MESSAGE.
20 ORDER. ADD TRANSACTION-QUANTITY, QUANTITY-ON-ORDER.
46 DISPLAY MESSAGE ON PRINTER. STOP 2.
21 GO TO REORDER-ROUTINE.
47 CLOSEOUT. CLOSE OLD-MASTER-FILE, NEW-MASTER-FILE. MOVE 'JOB
22 ISSUE. IF QUANTITY-ON-HAND IS NOT LESS THAN TRANSACTION-

48 FINISHED' TO MESSAGE. DISPLAY
23 QUANTITY GO TO SUBTRACTION-ROUTINE. MOVE
49 MESSAGE ON PRINTER. STOP 3.
24 QUANTITY-ON-HAND TO MESSAGE-A. MOVE PART-NUMBER OF

25 TRANSACTION-CARD TO MESSAGE-8. MOVE TRANSACTION-QUANTITY Figure 18 Continved

26 TO MESSAGE-C. DISPLAY MESSAGE ON PRINTER. MOVE

Figure 18. COBOL program for inventory control case study

21

