Principles of Programming

——ilil

Section 9: Random Access File Storage

EM Personal Study Program

® 1961 by International Business Machines Corporation

Section 9: Random Access File Storage

9.1 Basic Concepts

So far in this text, we have concentrated on programs built around files
* on punched cards or magnetic tape. These file storage media have the
advantage that they are relatively inexpensive. They have the partially
offsetting disadvantage that a record within the file can be accessed
only sequentizlly, since it is not possible to get to one record without
passing over all of the records in front of it. This characteristic forces
us to sequence all files and transactions according to the keys of the
records, which leads to considerable amounts of time spent in sorting.
It also forces us to batch the transactions to be processed against the
file, since it is not economical to read the entire master file to process
a few transactions.

In many applications, these requirements of sequenced files and
batch processing are not serious handicaps; in fact, batch processing
is in many cases a natural mode of operation. In other applications,
however, it would be much more desirable to be able to process trans-
actions immediately as they arise, rather than waiting for batches of
them to accumulate, and without sorting. To do so requires a master
file storage medium that permits any record in the file to be obtained
about as quickly as any other. (This is most definitely not true of mag-
netic tape.) Such a device is called a random access file storage medium.

It must be realized that the time to obtain a record from the currently
available random access file storage devices does depend somewhat on
the location of the record relative to the location of the record most
recently read. Thus the devices are not truly random. However, the
maximum time to obtain a record is so much less than the time to ob-
tain a randomly placed record from a reel of magnetic tape that we are
justified in using the word “random” in comparison with tape file
storage. (The only completely random access storage device widely
used at present is magnetic core storage; the time to obtain a word is
absolutely independent of where the previous word was located. In
comparison with magnetic core storage, “random access” file storage
media are decidedly not random, but this is not a relevant comparison,
since the much more expensive core storage restricts its use to smaller
sizes than are needed for file storage.)

With any of the various random access file storage devices, it is pos-
sible and desirable to organize programs in entirely different ways
from those employed with magnetic tape file storage. No sorting of the
transactions is ordinarily required; transactions can be processed as
soon as they reach the data processing center, if desired; the program
can be organized to refer to many small files if it is convenient to do so.
Furthermore, certain types of applications become feasible that are
simply not practical with magnetic tapes.

9.2 The IBM 1405 and 1301 Disk Storage Units

The random access file storage devices available for 18M computers are
built around a set of rotating metal disks on which information is re-
corded. In the 1BM 1405, pictured in Figure 1, information is written
or read by one or more access arms that are able to move to the desired
disk and to the desired position on a disk. A 1401 system including the
1405 is called an 1BM RaMAC® 1401 System, where RAMAC stands for
Random Access Method of Accounting and Control. In the 1M 1301,
pictured in Figure 2, information is written and read by a complete set
of access arms, one for each disk surface.

Figure 1. The IBM 1405 Disk Storage unit

Figure 2. The IBM 1301 Disk Storage unit

rne 1bm 1409

The 18M 1405 Disk Storage unit can contain 25 disks (Model 1) or 50
disks (Model 2), storing either ten or twenty million characters. Each
disk has 200 concentric tracks on which data can be recorded. A track
has two sides, one on each surface of the disk. Each track is further
divided into ten sectors, five on each side: the upper side of each track
contains sectors 0 through 4, and the lower side sectors 5 through 9.
A track sector, which contains 200 characters, is the smallest unit of
disk information that can be addressed.

A 1405 unit normally has one access arm, with a second being avail-
able as an optional special feature. The fork-shaped arm has two read-
write heads that read and record data on the disks. One read-write
head is for the top disk face, and the other is for the bottom disk face.
An access arm moves to the position specified by an instruction by
moving vertically to the correct disk and horizontally to the specified
track on that disk.

The disks rotate on a vertical shaft at the rate of 1,200 rpm. Data is
read or recorded at the rate of 22,500 characters per second. The time
required to access a record varies between 100 and 800 ms, depending
on how far the arm has to move from its previous position.

As with magnetic tapes, the representation of a character on a disk
consists of seven bits, including a parity bit. When information is read
from the disk, parity is checked and an indicator is turned on if parity
is not correct. An instruction is provided with which it is possible to
determine whether the information recorded on the disk is actually
the same as the information in core storage from which the disk data
was written. .

Each sector on a disk has a seven-digit address. The first digit speci-
fies the disk storage unit; for a 1401 system, this is always zero. The
next four digits specify the track. A Model 1 unit contains 5,000 tracks
(0000-4999) ; a Model 2 unit contains 10,000 tracks (0000-9999) . The
outermost track of the bottom disk has the address 0000 and the inner-
most track of the bottom disk has the address 0199. The outermost
track of the second disk has the address 0200 and the innermost track
of the second disk has the address 0399. The tracks on the twenty-fifth
disk have addresses running from 4800 at the outside to 4999 at the
inside. The tracks on the fiftieth disk have addresses running from
9800 at the outside to 9999 at the inside. The sixth digit specifies the
sector. The seventh digit of a disk storage address must always be zero.
When a sector is addressed from the computer, it is preceded by a digit
specifying the desired access arm; this digit is either zero or one. The
arrangement and addressing of disk information is shown schematically
in Figure 3. It may be noted from this figure that each record actually
contains its address indelibly recorded in seven additional positions at
the beginning of the record.

niainid
Module 2 . 200 Tracks
Top OF Disk

Disk 25
Disk 24

Module 1

Indelible
Address

~

0O 9 19 29 39 49 59 49 79 BY 99 109 119 129 139 149 159 169 179 189 199

Top Surface Disk 00

Figure 3. Information arrangement and addressing in the IBM 1405 Disk Storage unit

The IBM 1301

The 1BM 1301 Disk Storage unit is similar to the 1405, but in several
particulars it is much more powerful. The major change is that instead
of having one arm that travels to the specified disk, it has a complete
set of arms, one for each disk, arranged in a comb-like array. This
means that once the arms have been positioned to a track location, that
track on all disks is available with no further delay, It is convenient
to think of all the tracks accessed from one setting of the arms as com-
posing a cylinder.

Record length in the 1301 is flexible, instead of being restricted to
200 characters. This obviously simplifies working with records that are
too large or too small to fit conveniently and efficiently in 200 char-
acters.

Besides the radically different arm arrangement and the flexible
record length, the 1301 also has greater speed and capacity. The disks
turn at 1,800 rpm instead of 1,200, which shortens all delays based on

4

disk rotation by a third. This increase in speed of rotation, coupled
with a greater character density on the disks, raises the transfer rate
from 22,500 characters per second to 75,000. Finally, the capacity of a
1301 module is 25 million characters instead of the maximum of 20
million in a 1405 Model 2.

The unique powers of the 1301 lead to program organization and
processing techniques that are sometimes markedly different from those
used with the 1405, Since we shall not have space to cover the appli-
cation of both systems, we limit the following discussions to the 1405,
which is more widely distributed, at least at present.

Review Questions

- 1. How many characters can be stored on one 1405 disk?

2. Which disk in a 1405 unit contains sector 33862? How

many disks must the access arm go past in moving from
sector 08330 to sector 410457

3. True or false: in the 1405, the greatest distance (both

horizontally and vertically) that an arm can move is

from track 00000 to track 99999.

9.3 Disk Storage Programming for the IBM 1405

There are five instructions in the 1401 that are used in working with
disk storage,

The first of these is the Seek Disk instruction. Before any reading or
writing can occur, the access arm must be moved to the desired track.
This movement is initiated with a Seek Disk instruction. After the cor-
rect track has been located, a separate Read or Write instruction is
used to move data.

As with the tape instructions, these instructions have an operation
code of M, which is the same as that for Move Characters to a Word
Mark. The fact that this is a disk instruction is specified by the first
two characters of the A-address, which must be %F. The nature of the
disk instruction is specified by the low-order character of the A-address
and by the d-character. In a Seek Disk instruction, the A-address
is 9, F0 and the d-character is R. The B-address specifies the high-order
position in core storage of the address of the desired sector.

The use of Autocoder considerably simplifies the writing of disk
instructions, as it does tape instructions. The augmented operation
codes make it unnecessary to write any A-address or the d-character.
When the Autocoder processor translates the operation code SD for
Seek Disk, for instance, it fills in the %FO0 automatically.

5

VEeEK UISK

FORMAT Mnemonic Op Code A-address
- MCw M %F0
B-address d-character
XXX R
AUTOCODER
FORMAT SD Address

FUNCTION The A-address specifies that a seek operation is to
be performed by the access arm. The B-address
specifies the high-order position in core storage of
the disk record address.

The selected access arm seeks the disk and track
specified in the disk record address. Processing can
continue while the access arm is in motion.

WORD MARKS Not affected.
TIMING T = .0115 (L; + 9) ms + access time.

NOTE If the access arm is already at the disk track (not
: necessarily at the correct sector) that is to be used,
a Seek Disk instruction is not needed.

It should be emphasized that the Seek Disk instruction does not move
any data; it simply positions the access arm at the correct disk and cor-
rect track. The computer may continue processing with other instruc-
tions while the arm is in motion. If a disk Read or Write instruction is
encountered before the arm motion is completed, the read or write
operation is delayed until the access arm is in correct position.

Once the access arm is positioned at the correct track, a Read or
Write Disk instruction can be used to transfer data. Reading is initiated
with an instruction that once again has an operation code of M. The
A-address must be either %F1 or 9%F2 and the d-character must be R
for read. If the A-address is %F1, then a single 200-character record
will be read. If the A-address is %F2, then we have specified what
is called a full track read—that is, the specified record and the four
following on the same side of the track will be read. The B-address
specifies the high-order position in core storage of the disk record ad-
dress, which might be thought to be redundant since the disk position
has already been established by the Seek instruction. However, the
presence of the address in the Read instruction allows the accuracy of
the machine’s functioning to be checked, since at the beginning of each
sector is recorded in nonerasable form the address of the sector. Further-
more, the Read instruction is not able to “remember” from the Seek
instruction which sector was specified.

Read Disk Single-Record
Read Disk Full-Track

FORMAT Mnemonic Op Code A-address
- MCW M %¥Fx
B-address d-character
XXX R
AUTOCODER
FORMAT Single-Record: RD Address

Full-Track: RDF Address

FUNCTION This instruction causes data to be read from disk
storage into core storage. The digit 1 in the A.
address (%F1) specifies that a single record is to
be read. The reading of the disk is stopped by a

~ group mark with a word mark in core storage and

" the end of the sector, If the digit 2 is present in the
A-address (9%F2) a full-track read occurs. That is,
five 200-character records are read from disk stor-
age into core storage. Reading stops at the end of
the fifth sector.

The B-address specifies the high-order position in
core storage of the disk-record address and is fol-
lowed by the area in storage reserved for the data
read from the disk.
The R in the d-character position signifies that this
is a read operation.

WORD MARKS A group mark with a word mark must appear one
position to the right of the last position reserved in
core storage for the disk record. If a group mark
with a word mark is detected before reading of the
record is completed, the wrong-length record indi-
cator turns on and reading stops.

TIMING T = .0115 (L; + 9) + 10 ms + disk rotation.
60.196 ms is maximum time for single-record read.
10.196 ms is minimum time for single-record read.

The data from disk storage is read into core storage beginning imme-
diately after the disk address, the position of which is specified by the
B-address. In other words, the B-address specifies where in core storage
the disk address is located, and the record is read into core storage
immediately after the disk address. The transfer of information stops
at the end of the sector or upon encountering a group mark with a word
mark in core storage. (Under normal conditions the program is or-
ganized so that the two occur at the same time.) The group mark
should be one position to the right of the space reserved for the infor-

7

mation from the disk. If it is encountered earlier than that, the trans.
mission stops and an indicator called Wrong-Length Record is turned
on.

Writing of information from core storage to disk storage is carried
out with a Write Disk instruction, which is very similar to Read Disk
except that the d-character is W. '

Write Disk Single-Record
Werite Disk Full-Track

FORMAT Mnemonic Op Code A-address
MCW M %Fx
B-address d-character
XXX W

AUTOCODER
FORMAT Single-Record: WD Address

Full-Track: WDF Address
FUNCTION This instruction causes a single record (or full-

track) in core storage to be written on a disk
record. The digit 1 in the A-address (%F1) speci-
fies that a single record is to be written, If a 2 is
present in the A address (%F2), five 200-character
records are written on a disk track. Writing stops
at the end of the fifth sector.

The B-address specifies the high-order position
of the disk-record address and is followed by the
data to be written on the disk.

The W in the d-character position signifies that
this is a write operation.

Before writing starts, an automatic check of the
record address in storage, with the record address
on the disk, is made. If they are not the same, the
unequal-address compare indicator is turned on,
and the data in storage is not written on the disk.

WORD MARKS The writing of data stops when the end of a record
is reached or when a group mark with a word mark
is sensed in core storage. If the group mark with
word mark is sensed before the end of a record, the
remainder of the disk record is filled with blanks
and the wrong-length record indicator is turned on.

TIMING T = 0115 (L; + 9) + 10 ms + rotation time,
60.196 ms is maximum time for a single-record
write,

10.196 ms is minimum time for a single-record
write,

NOTE A Write Disk Check instruction must be performed

following a write disk operation. No other disk stor-
age operation can be performed until the check of
data written on the disk is completed.

A Write Disk instruction must always be followed by a Write Disk
Check instruction. This instruction causes a character-by-character
comparison of data in core storage with the data just written on the
disk, and turns on an error indicator if there are any differences. The
actual machine instruction is just like a Write Disk instruction except

that the A-address must be %F3 and the d-character is W.

Write Disk Check

FORMAT Mnemonic Op Code A-address
MCW M %F3
B-address d-character
XXX W
AUTOCODER
. FORMAT WDC Address
FUNCTION This instruction causes a character-by-character

comparison of the data in core storage with the data
just recorded on the disk. The system automatically
reads the disk record that was most recently ad-
dressed. This instruction must follow a Write Disk
instruction.

The digit 3 in the A-address specifies that & check-
ing operation is to be performed. Either a single
record or a full track is checked, depending on how
the data was recorded by the most recent Write Disk
instruction.

The B-address specifies the area in core storage
where the record address and the data recorded on
the disk are located.

WORD MARKS A group mark with a word mark must appear one
position to the right of the disk data in core storage.

TIMING T = .0115 (L; + 9) ms + 50 ms

NOTE If the disk address in core storage is not the same as
the address in the record, the unequal-address com-
pare indicator is turned on. If any of the characters
in the disk record are not the same as the characters
in core storage, the read-back check-error indicator
is turned on.

In the instructions that we have described, word marks in core stor-
age are not written on the disk and when disk data is read word marks
are not affected in core storage. There is, as in the case of tapes, a sepa-
rate instruction for converting core storage word marks into separate
characters when the record is written on the disk. When such a record
is read back with a suitable instruction, the special characters are again
reconverted to word marks. Beyond this note of their existence we shall
not consider instructions for reading and writing word marks.

The final type of disk instruction is simply a variation of one that we
met much earlier: Branch If Indicator On. For use with disk storage,
we have five additional indicators and corresponding d-characters.
These are shown in the summary box for the instruction. “Any Disk
Unit Error Condition” comes on if any one of the first three is on. This
makes it possible to make one check for any disk errors and, if the indi-
cator is off, to proceed with the normal program. If the indicator is on,
only then is it necessary to test the other three indicators to find out
which of the errors is present.

Branch If Indicator On

"FORMAT Mnemonic Op Code I-address d-character
B B XXX X
FUNCTION The d-character specifies the indicator tested. If the

indicator is on, the next instruction is taken from
the I-address. If the indicator is off, the next sequen-
tial instruction is taken. The valid d-characters and
the indicators they test are as shown below,

d-character Indicator
v . Read-or-Write Parity or
- Read-Back Check Error
A\ Wrong-Length Record
X Unequal-Address Compare
Y Any Disk-Unit Error Condition
N Access Inoperable
WORD MARKS Not affected.
TIMING T=.0115(L; +1) ms

For a simple illustration as to how these instructions may be used,
we may consider the inventory control application of Section 8.4. We
shall assume as before that the transaction cards contain a part num-
ber in columns 1 to 5, a code in column 6 indicating an adjustment, a
receipt or an issue, and a quantity in columns 7 to 10. We shall assume
that we have a 1405 Model 2, which has exactly 100,000 sectors in it
and that each master inventory record contains 200 characters. We
shall assume that the part numbers are numerical and shall, therefore,

10

Seek Disk
Record

Read Disk
Record

Write "'Bad
Code"" Error
Message

Halt

Adjustment: Receipt: Issue:

Replac_e Mast. Add Trans. Qty Subtract Trans.
Qty with to Mast. Qt Qty from
Trans. Qty. S Mast. Qty

Write Disk
Record

Write Error
Message on
Printer

Last Card? >N

Halt

Figure 4. Block diagram of the disk storage approach to the inventory control applica-
tion of Section 8.4

11

panuyuo) ¢ a4nbiy

VSN NI GRINI
1-0661°PTX W04

T 1 T T ¥ LA L T T T L 2L B T L] T T T T LA L L L e T LI ¥y r r 10 T T T 1 LI § -—- T T T 1 4“—
I
T — LA ...d....4<__........4_.<......r.m<<_.r_m..oﬂzfn__..“..... e
T T T T T T T v _ T T T ¥ _T T T ¥ T_T T r T =TT T -4~< T T T T T
T T T ...4....4@oml_,.._<x 8¢r ¥Ygu¥¥3 31T4D Mmaa 29SS S3IN o
T T T T LS S S S o e ey B S St e S e E e A Sy S S v S S e e P L S S e vy Bt D LB 100t S o a5
T ®QILIVH 80r 3002 SSV1D AVED MDA (1ross3an 60
T T T T T Ty T LANES SR BN D BN S B At S BENR SN SEED S S SN S AN M Sunn S Seun B S R Suun EE Sumn 2 .O._4e<\| T T _\/.0.2.(_1.._. .0<°
|
T T VT T T ._-._..<<.<_<.<.......-....-..m.:m-_4. ..<H.<M_DASJU.F<° -
T I r Ty T T LB ._-_____.4..-...<<<_..<._..-«.W..._ T 1 T 4-<ﬁ2-n_.z.<<m<.ﬁ .0.0 —
T T ._.-d..q-qdﬂJ...._-.q.i.._44...<<11__<...‘.<__<_<
T " 08X I vQ o000 ayvy S°
—r T T T T T T T T T T T T T
L B S S s B T T LEN S S SEED SENL A B S S Sa o1 9 “>0Fm§ b0
—r—r—r——r—r A — qj._......_...d..<.._._....iﬂm:*_A..< TN G TShl €0
|
T . v T e e T T ™
17T T T T T ¥ LRI LANR LRI T T T 1 7 T 17 T T T LI v T 1 1 w—OONx_ qo _ WI—Hu No
T — v — - T T —r—r——— T
T v — r—r——r—r——r——rr——r— T T 0000000 MJQ 4_co<v_mo o
0L S9 []] SS 0S Sb ot (3 o¢ 52 12[oe n*w_ St O 9| moc_._m
14DID! !
ANV33IdO " 1*q
(A 6
Z 40 T131°oN 3boy
c e . - - -
¥ 24nB1y ul pawwoiBoip ainpasoid ay} jo woiboid 49podojay G aunbiy
T v T R S rr -
.
]
L e e L e o LA e SIS MM S [N
TEvis HenT T NI A V- I s m vy o
€ - H vE
R e B faanan aL SRR T M . .
S B S I I M I S Ao e S VT S
— R s R A"\~ R — E
S S R B e =i e S
T T pddd ANV JT WONvae T T TN Yo e Y3 NI
S O T F {7 MM AR e Sy et
I i G I v A R pn e e L S
T - — Tt T TEW NNV T R
. T e T — TTTER g
S A S S R Sy v Ty o e R
e o e L S ot — —— T B
e T T T N T I W W
T RN . v — el z
— T EVETIN TevE T T IR T ————r —— ——
Ty avE | e .
’ T NG ILOVSNVYL € 3000 0SS 304
T : TFTaRT — — TTTEeT IS e 35
— — TN IR T , TTYee NN eI S g 55
T e YT ANV T HINYEE T ey TTEeTTI T NTE T =5
v ——r M e e 99 u . +5
T MEEED 9~ aavVxNsa as T €0
SSINAAY a¥@03y WSIa 9N L3S - davaSa NINVEL MOW i)
i QHVD vV av3Iy T i j y TSN
[]3 1] (1] L] 3] 113 i3 1 sfst 9
ANVIRO 14039d 19901 supy
2) B840
Z ° 71"oN 9Bog A voEEP.mo._n_
o8 % ouposuopy 133HS ONIGOD ¥3I00D0LNV 0ivl/10¥L a so.mo_“

war

12

"z

pe able to use the part number directly as the address of the corre-
sponding master record. The master record will be assumed to contain
in positions 1 to 5 the part number and in positions 6 to 10 a quantity.

We shall suppose that transactions are entered in the card reader as
small groups of them accumulate. If the job were large enough to oc-
cupy a 1401 disk system fully, small groups might be entered almost
continuously. If this application were only one of many things being
done with the computer, the groups would be entered occasionally, and
between times the system could be used for other work.

Notice that it is completely unnecessary to sort the transactions into
sequence on any key—since the master file is not in any such sequence,
which in turn is possible because it is not necessary to access the file
sequentially. For the same reason it is not necessary to batch the trans-
actions, although this might be done as a matter of convenience if the
transactions are such as not to need immediate action.

The procedure is now so simple that the block diagram in Figure
4 is hardly needed. As each transaction card is read, the corresponding
master record is obtained from disk storage, updated and replaced in
disk storage. This simple process is repeated for as many cards as there
are,

The program shown in Figure 5 presents no special problems. We
begin by reading a card and setting up the disk address, which latter is
done by moving the part number into a constant that will have a zero
as the first and last digit. Then we seek the disk record having this
address and when it is found read it into storage. This a followed by a
test for reading errors. Notice in the constants in this program, that
immediately following the disk address we have defined an area of 200
characters to hold the record. In this Define Area instruction, notice
the G; this will cause a group mark with a word mark to be entered
following the 200-character area. Next we inspect the classification code
in the card record to determine whether it is a recount, receipt or issue,
just as in the magnetic tape version. Once again, if it is none of these
“three, we write an error message. Next, the transaction quantity is used
to update the master record and the master record is written back in
disk storage. Notice that there is no Seek instruction here: it is not
necessary to seek the correct track if we are already positioned in it.
Immediately following the Write, there is the Write Check and a branch
to an error routine if there is any file error. Finally, we test the last-
card switch and go back to the beginning if there are more cards.

Notice in the constants for this program that the alphabetic con-
stants are entered in Autocoder preceded and followed by the char-

acter @,

14

Review Questions

1. Must a new Seek instruction be executed if a different
sector in the same track is to be read or written?

2. Is there any circumstance in which it is not necessary to
follow a Write Disk instruction with a Write Disk Check
instruction?

9.4 Disk Organization and Addressing

It may be well to consider precisely how the preceding example is not
typical, in order to develop a few of the standard programming tech-
niques in using disk storage.

First of all, we assumed that the entire disk storage was taken up
with the master file. This is seldom the case. Usually, space is reserved
for programs and for the files of other applications.

The most unrealistic thing about the preceding example is the as-
sumption that the part numbers run from zero to 99999 in an unbroken
numerical sequence. Such a simple correspondence between the key
of the records and the record addresses is extremely uncommon. For
one thing, part numbers are often not purely numerical; they often
have letters and symbols in them. Second, even if they are numerical,
they are often longer than five digits, Third, whether they are numeri-
cal or alphabetic, there are usually many unused numbers in the se-
quence, so that if we organize disk storage as in the preceding example,
a large part of it would never he used, which is obviously uneconomical.
Our task for the rest of this suhsection is to consider some of the com-
monly used ways of deriving from the key of a record the disk storage
address of that record.

The simplest method is based on deriving the address from the key
by simple arithmetic. Suppose, for example, that the keys are purely
numerical and seven digits long. Assume. further, that 20,000 disk
storage records have been assigned to this file, with record addresses
from 50,000 to 69,999. What sort of a scheme could we set up to obtain
from such a key an address in the specified range? One way is to pro-
ceed as follows: Multiply the seven-digit number by 2, drop the last
three digits of the product and add 5 to the high-order position of the
remaining digits. A little experimentation will show that for any seven-
digit number this yields an address between 50,000 and 69,999.

This method does create a new problem, however: It is very likely
that in some cases several keys will convert to the same address. For
instance, the keys 1234567 and 1234568 both convert to disk address
52469. This situation is handled by a technique that is known as chain-
ing—which has no relation to 1401 address chaining. To understand
this technique, we must discuss how disk storage is initially loaded and
how the records are obtained when disk storage is later read.

15

Suppose we are loading storage with records whose addresses are
derived by the simple computation described above. The section of
storage that is to be loaded is initially cleared to blanks, using a utility
program that will be described later. Then, as each record is about to
be loaded into storage, the record address is computed from its key.
Before storing the record at this address, however, we first check to
make sure that the space really is free. If the space still contains blanks,
we go ahead and load the record into the sector address as computed.
If, however, the space already contains a record because some previous
key had converted to the same address, then we store this record in an
overflow location. This might be the next consecutive record, or it
might be in a separate section of storage set up for overflows. Then in
the record having the address computed from this key we place an
overflow address that specifies where the second record having this
same computed address is located. When two or more records have the
same disk storage address. we speak of the one that is placed in the
computed address location as the fome record and all of the others as
overflow records. Each record is said to be chained to the one following.

We naturally hope that the characteristics of the keys of the source
records, together with the method of computing the addresses, will lead
to a minimum of such overflows. This, in fact, is one of the primary
considerations in choosing an address computation method.

When disk storage that has been loaded in this fashion is to be read,
we go through the same address computation scheme on the key. We
seek and read the record at this computed address and then check to see
whether it contains the record that we desire, by comparing the key
of the record that has been read with the key from which the address
was computed. If the two are the same, we are able to proceed imme-
diately with processing. If they are not the same, we must obtain the
address of the first overflow record from the record that has been read.
When it has heen read into core storage, we can similarly inspect its key
and find out whether it is the desired one. This process is continued
until the proper record has been brought into core storage.

Under unfavorable circumstances, the address computation method
suggested above could lead to very long chains of records. This, in turn,
would lead to long processing times to search through the chains to
find the desired record. For instance, suppose that in one range of the
keys there was an unbroken sequence of part numbers, running from
1200000 to 1200199. Every one of these keys would convert to the
same address, namely 52400. This would lead to a chain 500 records
long, which would obviously be highly undesirable. It appears, there-
fore, that this method of arriving at a record address applies only if the
keys are fairly uniformly distributed over the entire range of possible
values. This is frequently not the case, and we therefore attempt to find
address computation schemes that will create a fairly uniform distribu-

N

16

tion of the addresses even when the incoming keys are tightly bunched
together in some regions. A good deal of effort has been put into finding
such schemes, and the subject is still under development.

It is not possible to state any one method that will always lead to a
sufficiently uniform pattern. Two methods that often work, however,
are the following:

1. Split the key into sections of four or five digits and add them.
Multiply by a compression factor that will bring the final product into
the desired range of address, and add the base address.

Example. Given eight-digit keys that iust be changed into sector
addresses between 32000 and 36999, which is 5,000 sectors. Take the
key 82145369 as a sample.

Add the first four digits to the second four, giving 13583, Multiply
by 0.25, which is required to “compress” a number that could be as
large as 19998 into a number no larger than 5000, giving 3395. Add
the base address, giving the final result: 35395,

2. Split the key into two parts, multiply the two parts and extract
the middle five digits. Multiply by a suitable compression factor and
add the base address.

Example. Given nine-digit keys that must be changed into sector
addresses between 24000 and 38999. which is 15,000 sectors. Take the
key 298154726 as a sample.

Multiply the first five digits by the last four, giving 140905690. Ex-
tract the middle five digits, giving 09056. Multiply by the compression
factor 0.15, giving 01358. Add the base address, giving the final result:
25358.

Another approach is to use some address computation scheme to
reach a specified track, without going on to compute a sector within the
track. Sector zero within this track is then used as an index to the sther
nine sectors. That is to say, sector zero contains the keys of all the
records stored in that track, together with their addresses. Now, to
obtain a record, we compute the track address, seek sector zero on that
track, read the index into storage and from that obtain the address of
the proper record location. Since the record will be in the same track
as the index, only one Seek is required and the method is not too time-
consuming. Overflow records become necessary only if the keys of
more than nine records convert to the same track address. A disadvan-
tage of this method is that it does require two Read Disk instructions
to obtain a record.

The same general idea can be extended even further. An index to
the entire file can be set up so that we first locate the proper disk, then
go to the outside track on that disk to find an index to the desired track
and go from there to the desired record. This has the advantage that
little or no address computation is required and that if suitably set up
there are no overflow records.

17

Review Questions

1. Using the address computation scheme outlined at the
beginning of this subsection, to what disk sector address
does 0085692 convert? How about 88824507
, 2. What is the basic idea of chaining?
3. What is the most important factor in choosing a ran-
domizing formula for computing the address of the home
record in a chained file?

9.5 Disk Storage Utility Routines

A number of utility programs are available for simplifying work with
files stored in random access storage. A brief description of some of
these routines will also allow us to introduce a few more ideas about
how disk storage may be used.

Clear Disk Storage. The clear disk storage program erases all data
in areas of disk storage specified by the user, and fills these areas with
blanks. The program can clear disk storage completely or only in
selected areas,

Disk to Tape. Each time a disk storage transaction is processed, the
previous contents of the master file are no longer available. This raises
the possibility that through machine error, program error or im-
proper data, parts of the file could be destroyed. This problem is not
nearly so serious using magnetic tapes, because we can save the tapes
from previous cycles and, if necessary, rerun the job. With disk stor-
age, of course, we don’t have the previous contents of the file unless
steps are taken to make a copy of the file at periodic intervals. This
capability is provided by the disk-to-tape routine, whereby the entire
file or selected portions of it can be written on magnetic tape. This
dumping of file storage can be done in a reasonably short time. and in
most applications would be done periodically, perhaps weekly. Now,
if through some sort of error the file contents are destroyed, it is neces-
sary only to reload the file from the most recent tape and reprocess all
of the transactions that have occurred since then. It is, of course, neces-
sary to save the transactions for this purpose.

Tape to Disk. This routine is the exact analogy of the disk to tape,
making it possible to reload the entire disk file or selected portions of
it from magnetic tape.

Disk to Card. This program also makes it possible to preserve the
contents of disk storage. It is normally used only in systems that do not
include magnetic tapes, because the time required to punch cards is
much greater than the time required to write on magnetic tape.

Card to Disk. This program is the exact opposite of the disk to card.

In all of these loading and unloading programs the smallest unit of
information that can be moved is a single track (2,000 characters).

18

GChain Loading Frogram. 1his program simplifies the mnihal loading
of a disk file when the file is being created. In order to use this system,
the programmer must provide an address computation routine that
can be used by the loading program. The program loads the master
records into disk storage under control of this addressing routine and
establishes chains for master records converting to the same disk stor-
age address. Fach record in a master chain is located as close to the
preceding chain record as possible, thus minimizing access time during
disk storage operations. Input records can be on cards or tape.

Chain Additions Program. This program adds new records to a
chained file, once again under control of an addressing routine that
must be provided by the programmer. The format of the added records
must be consistent with that of the records already in the file.

Chain Maintenance Program. This program carries out a number
of operations that are required in using a random access file storage
system. For instance, when a record is to be deleted from the file the
simplest thing to do is to tag it by placing a character somewhere in the
record to indicate that it is to be deleted. Then the chain maintenance
program can be used to actually remove the record from the file and
make the record storage locations available for later additions, modi-
fying chains as may be necessary.

The chain maintenance program makes it possible to take advantage
of a characteristic of most files. Analysis of many typical files shows
that a relatively small fraction of the items account for a relatively large
fraction of the total activity. This is sometimes described approximately
as the 80-20 rule: 80% of the activity comes from 209, of the records.
This being the case, it obviously saves disk access time to place the
records having the highest activity at the front of their chains. A simple
way to accomplish this is to allow space in the records for a count of
the number of times each record is referred to; this count is kept by
the application program. The chain maintenance program can then
inspect this count and reorganize the chains so that the records most
frequently referred to appear early in the chains.

The chain maintenance program can be run periodically whenever
time is available, since it keeps track of a portion of the file remaining
to be processed. '

In use, the chain loading program, the chain additions program and
the chain maintenance program are all stored in one part of the disk
storage unit so that they can be loaded into core storage through a
simple calling procedure. A common plan is to allot some of the lowest-
numbered tracks to these service routines.

19

9.6 Lase Study: Wholesale Grocery

The following example based on the data processing requirements of
the chain or wholesale grocery operation will serve several purposes. It
will provide an example of how a 1401 RAMAC system can be used. At
the same time, it will provide an example of how several related data
processing activities are frequently combined into one program. Finally,
it will illustrate how an ingenious programmer can take full advantage
of the equipment available to him by tailoring the machine methods to
fit both the equipment and the application. (In this last respect the case
study is, in certain details, slightly untypical of disk file methods.) We
shall describe the business situation in which this program would be
applied, discuss the organization of the program itself, and show a block
diagram of the processing. We shall not write a program.

A certain wholesale grocery distributor has an inventory of 5,000
merchandise items which he trucks to 30 stores. An order must be
shipped not later than the next working day after he receives it. The
order must be accompanied by an invoice.

The order as received shows the items in the sequence in which they
appear in the catalog. They are arranged for convenience in making
up the order, with similar items grouped together and with the broad
classes arranged in the order in which they appear on the shelves in a
typical store. There is no way to change this general scheme of catalog
arrangement. In the warehouse, however, the merchandise is arranged
for ease in making up the order, with the most active items located close
to the loading dock, for instance. The invoice which is used by the ware-
house to make up the shipment must show the merchandise items in the
sequence in which they should be “picked.” Thus, the order sequence
must be transformed into the picking sequence for printing the invoice.
Furthermore, each page of the invoice must show the store name and
address.

It is necessary to maintain records of the shipments to each store for
billing purposes. It is also necessary to maintain inventory records on
all of the items in the warehouse and to print low-stock notices when
the halance on hand falls below a minimum point.

The order is fed into the computer on a deck of cards that shows the
desired merchandise in terms of page and line numbers in the catalog,
along with the quantity desired, store number, and date. Each card
refers to one catalog page and shows the quantity desired, for each of
up to 50 items. The order will require as many cards as there are cata-
log pages from which merchandise is ordered. By a special method of
card coding. it is possible to specify a quantity of up to 79 for each item.

The disk storage is divided into five sections for this application, as
shown in Figure 6.

PROGRAM
STORE NAME & ADDRESS

PICKING SEQUENCE
(Warehouse Location)
INVENTORY AND

BILLING RECORDS

AVAILABLE FOR
OTHER APPLICATIONS

Figure 6. Disk storage organization for the wholesale grocery application described in
the text

Store Name and Address File. This file contains the number, name
and address of each store customer, along with billing information. As
each store order is processed during invoice preparation, the proper
store record is selected from the disk file and placed with the order
number and the date in core storage. This information is printed on
each page of the invoice.

Picking Sequence Table. A picking sequence table is set up in disk
storage with an entry for every stock item. This table is in order by
page and line number and shows the picking sequence for each item
in the warehouse stock.

Billing and Inventory Record. For each item of stock, a billing and
inventory record is stored in the disk storage as one 200-character
record. These records are arranged in warehouse location order, that is,
in picking sequence. The record contains the warehouse location, the
picking sequence, catalog page and line number, size, alphabetic de-
scription of the item, minimum balance, total sales to date, unit price,
halance on hand, and any other information required by the individual
customer,

These three files, together with the program for the application, will
not completely fill the disk file. The remaining space is available for
other applications.

21

DLOTEL OTHEDS ale protessed as tNey artive or pernaps in smali batcnes.
The store order cards are fed into the 1401 grouped by store and in
sequence by page number—the same order in which they are received.
An entire order is read and the quantity stored before printing of the
invoice begins. This is made necessary by the fact that the catalog se-
quence and the picking sequence are essentially unrelated. As each
order card is read, the picking sequence table for that page is obtained
from disk storage. Each line of the order is scanned and whenever a
quantity appears, that quantity is stored at a core storage location indi-
cated by the table. If no quantity was punched a zero is stored.

The power of the program organization for this problem depends
very much on the use of the core storage picking sequence table. This
table must have one character position for each item in the stock. In
our case, we assumed 5,000 items and, therefore, 5,000 core storage
locations would have to be allocated to the table. (This would, of course,
require a larger core storage than that assumed for the rest of this text.)
Each item of stock is associated with one character position in this
table. The first position in the table is associated with the stock item
that should be picked up first if it is present in the order. The second
position is associated with the stock item that should be plcked up
second, and so on through the 5,000 positions.

As each order card is read, the picking sequence table in disk stor-
age is used to determine where in core storage the quantity for that
stock item should be stored. When all the order cards have been read,
the core storage picking sequence table will contain as many non-zero
entries as there are items ordered by the store. This table will contain
no identification of the items; this is inherent in the position of each
quantity within the table. After all the order cards have been read, it is
necessary only to scan through the 5,000-position table looking for
non-zero entries and keeping a count of which position of the table is
being inspected. Whenever a non-zero character is found, the counter
can then be used to compute the address of the corresponding record
in the billing and inventory section of the disk storage, which we said
was also in picking sequence order.

An example may help to clarify this procedure. Suppose that the

- warehouse stocks only ten items, to keep the example simple, and that
a certain order lists six items. As each item is processed, its picking
sequence number is obtained from the disk file. Assume that the items
ordered, their quantities, and their picking sequence numbers are as
shown in Figure 7. The essence of the scheme is to store the quantity for
each item in the position in the core storage picking sequence table
corresponding to its picking sequence number. Assuming that the en-
tire core storage picking sequence table is cleared to zeros before the
order is processed, our example would produce a picking sequence
table as shown in Figure 8, where the table is taken (arbitrarily) to

22 \

Page Line Quantity Picking Sequence
Number
1 13 20 . 4
1 34 5 L 7
2 02 15 2
6 41 | 2 9
8 12 30 B
8 13 8 5
Figure 7. lllustrative grocery order
Core Storage Quantity
Location

3001 " 30

3062 15

3003 0

3004 20

3005 8

3006 0

3007 | 5

3008 : 0

3009 2

3010 0

Figure 8. Core storage picking sequence table produced from the order of Figure 7

23

start at 3001. The 30 in position 3001 is now identified with the item
shown on page 8 line 12 only by the relative location of the 30 in the
table—but this is enough to identify it, since the billing and inventory
records are in the same sequence.

What has been done here amounts to sorting the items in the order
into picking sequence, by a method known as distribution sorting. It is
not typical of disk file applications to do this, but the programmer
should always be alert for unconventional ways to do things, if time
and expense can be saved.

We may note briefly how it is possible to store a quantity of up to 79
in one core storage position. This merely requires coding the quantity
in terms not only of numerical bits, but also the zone bits and the word
mark bit. One possible system would be to specify that a word mark
bit of 1 stands for a quantity of 40. The B-bit stands for a quantity of
20, and the A-bit thus stands for a quantity of ten. Numerical bits are
used in the normal manner to stand for quantities of zero to nine. The
following table shows how a few representative quantities would he
coded in this scheme.

Quantity Coding
WM B A Numerical

0 0 0 0 0000
10 0 0 1 0000
15 0 0 1 0101
23 0 1 0 0011
39 0 1 1 1001
61 1 1 0 ooo
79 1 1 1 1001

A moderately simple program can be used to create these codes as
the quantitics are read from the order cards, and another program can
convert the codes back to normal two-digit quantities when the in-
voices are prepared.

This use of the word mark bits is definitely not typical, but there
is nothing wrong with it. In this case it brings about a saving of 5,000
characters of storage, which in effect makes the whole approach
feasible,

To prepare the invoice, we search through the core storage picking
sequence table as outlined above. Each time a non-zero item is detected,
the corresponding billing and inventory record is obtained from disk
storage. The inventory balance is tested for availability. If stock is avail-
able, the inventory and sales-to-date balances are updated by the quan-
tity ordered and the updated billing and inventory record is returned

24

1o disk storage. The quantity ordered is multiplied by the price and a
billing line printed on the invoice. If an item is out of stock or if a mini-
mum balance has been reached, an appropriate card is punched for
information to the buyers. After all items have been recorded on the
invoice, a card is punched for the invoice total.

The items now appear on the invoice in picking sequence. All card-
sorting operations required by unit record methods have been elimi-
nated by recording the entire order in core storage in picking sequence
as the initial step.

A block diagram of the operations in this application is shown in

Figure 9.

Exercises

*1. Write a routine to compute a disk address from a seven-digit
key by the method outlined in Section 9.4, then read that record into
core storage.

2. Using the routine written for Exercise 1, write a routine to han-
dle chaining. Assume that if the transaction key does not match' the
key in positions 1-10 of the record, the sector address of the next record
in the chain appears in positions 180-184 of the record. (Chains may
be any number of records long.)

*3. Set up a routine to read a record from an indexed file, as fol-
lows. The input key is nine digits long and purely numerical. Obtain a
track address by forming the sum of the left three digits, the middle
three digits, and the right three digits, then retaining only the last
three digits of the sum. This gives the address of a track; obtain sector
zero of this track, which contains an index of the records stored in the
other nine sectors in that track. The index consists of ten-character
groups, each group containing a nine-digit key and a one-digit sector
number, Write a loop to search through the index, once it is in storage,
to find the key in the index that matches the desired key, then use the
corresponding sector number from the index to get the address and to
read the desired record.

4. A labor distribution problem begins with a deck of cards, each
containing an employee number, a number of hours worked, and a job
code. You are required to compute the labor cost for each labor voucher,
assuming the existence of a file giving the pay rate for each man and
assuming no overtime (for this problem). There is also a file contain-
ing a record for each job code. You are required to print a line for each
job represented in the input deck, showing the total labor cost for the
week, and to update the job record to reflect this week’s costs.

Outline the method you would follow to carry out these operations,
including block diagram.

25

Start

eek an
Read Billing
and Inventory
Record

Test Inventory
and Update
B& Record

eek and Read
Picking

Sequence Table Write Updated

B&1 Record
Proc
or?deerss . Exfend' and .Edit
Card . Invoice Line
Print

Invoice Line

Store Name
and Address

Punch
Appropriate
Signal Cards

Scan Storage
for Order
Quantities

Print and
Punch

Invoice Totals

Figure 9. Block diagram of the procedure for the wholesale grocery application

26

