return to main 1401 Restoration Page
Fortran Geezer visit
Note: Free tickets available
here "other arrangements"
Hopefully in time sequence order
- Initial Announcement - from Van Snyder
- Fun - from Robert Garner
- Run - from Marc
- Carl and Ken are potentially available
- Here are the two examples from the Fortran manual - from Van
- # 2 Ran Great - from Marc
Initial Announcement - from Van Snyder
>
> From: Van Snyder
> To: Robert B Garner
> Date: 03/20/2018 11:08 AM
> Subject: Fortran Geezer visit
>
>
> Robert:
>
> The Fortran Geezer group (veterans of Fortran standardization) are
> visiting CHM 2:30-4:30 on Sunday 10 June.
>
> Is it possible to open the 1401 room and run the Fortran II compiler?
>
> Thanks,
> Van
|
Fun - from Robert Garner
On Tue, 2018-03-20 at 10:51 -0800, Robert B Garner wrote:
> Van,
>
> > The Fortran Geezer group (veterans of Fortran standardization) are
> visiting CHM 2:30-4:30 on Sunday 10 June.
> > Is it possible to open the 1401 room and run the Fortran II
> compiler?
>
> For something this fun, it seems likely.* ;-)
> Do you know anything about the Fortran II programs they might want to
> run (size, expected runtime, etc)?
> (They'll need to send them in advance, or arrive with their punched
> decks. ;-))
I think running the example programs from the 1401-FO-050 manual
(C24-1455) would be good enough. Example 2 is attached. The "P" in
column 13 could be removed if a condensed deck is not desired. Also a
SimH script to run it. A condensed deck for it might be in the 1401
room. I ran it there to verify there was a bug in the SimH divide
instruction.
The video was about running Example 1, so I assume you have that deck.
> I've cc'd Marc Verdiell, Carl Claunch, Ken Shirriff, and Stan Paddock,
> cc'd, for potential availability on June 10th.
> (I'm out of town then.).
>
> If they're not available on June 10th, Katharina McAllister could
> check on the possibility of scheduling the 1401 docents for at least a
> normal system demo at that time.
>
> - Robert
>
> * Technically, the 1401 room is open anytime the CHM is open. It's
> just not necessarily turned on. ;-))
> (Visitor demos occur on Saturday mornings and on Wednesdays, per info
> at top of our 1401 web site.)
|
>
Run - from Marc
Subject: RE: Fortran Geezer visit
From: < marc.
Date: Tue, Mar 20, 2018 1:25 pm
To: ...
Make sure they run their programs on the simulator first!
Adding Michael Albaugh. Michael can prepare the cards deck
the real run (the control card in particular).
I will just be back from a trip so I *might* be able to help.
Marc
|
Here are the two examples from the Fortran manual - from Van
# 2 Ran Great - from Marc
Subject: RE: Fortran Geezer visit
From: "Marc Verdiell"
Date: Tue, Mar 20, 2018 10:40 pm
To: ...
We have example 2 somewhere or can recreate it from
the tape emulator self punching tape. It ran great on the 1401.
Marc
|
Example-2.f from Van
paramI9I2020P
c Appendix E Sample problem 2
c Exercise library functions and punch object deck
print 8
8 format(48h1A=2I(SQRT(1-COS(X)**2)COS(X)SIN(X)/ABS(SIN(X))))
print 1
1 format(97h0 I DEGREES A EXPONENTIAL(A)=B
1LOGARITHM(B)=C I SIN(2X)=D C-D//)
fi=1.0
degree=7.5
delta=1.57079632679489661923/12.0
arg=delta
3 a=(fi+fi)*sqrtf(1.0-cosf(arg)**2)*cosf(arg)
if(fi-24.)7,7,6
6 a=-a
7 b=expf(a)
c=logf(b)
d=fi*sinf(arg+arg)
diff=c-d
print 2,fi,degree,a,b,c,d,diff
2 format(1x,f3.0,f9.1,f19.10,e19.10,2f19.10,e12.1)
fi=fi+1.0
degree=degree+7.5
arg=arg+delta
if(fi-49.0)3,4,5
4 print 9
9 format(1h1)
stop 111
5 stop 777
end
|
Example-2.run from Van
at mt1 v3m4/v3m4.simh.mt1
at cdr Example-2.f
at lpt Example-2.lpt
at cdp Example-2.cd
d ssb 1
b mt1
c
q
|
Example-1-new.out from Van
1HILBERT MATRIX
0.1000000E+01 0.5000000E+00 0.3333333E+00 0.2500000E+00 0.2000000E+00 0.1666667E+00 0.1428571E+00
0.5000000E+00 0.3333333E+00 0.2500000E+00 0.2000000E+00 0.1666667E+00 0.1428571E+00 0.1250000E+00
0.3333333E+00 0.2500000E+00 0.2000000E+00 0.1666667E+00 0.1428571E+00 0.1250000E+00 0.1111111E+00
0.2500000E+00 0.2000000E+00 0.1666667E+00 0.1428571E+00 0.1250000E+00 0.1111111E+00 0.1000000E+00
0.2000000E+00 0.1666667E+00 0.1428571E+00 0.1250000E+00 0.1111111E+00 0.1000000E+00 0.9090909E-01
0.1666667E+00 0.1428571E+00 0.1250000E+00 0.1111111E+00 0.1000000E+00 0.9090909E-01 0.8333333E-01
0.1428571E+00 0.1250000E+00 0.1111111E+00 0.1000000E+00 0.9090909E-01 0.8333333E-01 0.7692308E-01
0INVERSE
0.1127130E+02 0.2697477E+05-0.2552921E+07-0.1180393E+08-0.2244334E+05-0.5141136E+02 0.2419414E+01
-0.3487756E+01 0.8314032E+06-0.3636493E+08-0.1932304E+09-0.4360831E+06-0.1005926E+04 0.4292177E+02
-0.1398673E+02-0.2247596E+07 0.1141950E+09 0.5912305E+09 0.1294083E+07 0.2980953E+04-0.1293565E+03
0.1480552E+02 0.2393361E+07-0.1215343E+09-0.6292726E+09-0.1377468E+07-0.3173045E+04 0.1376856E+03
0.1151764E+02-0.6712530E+06 0.2397420E+08 0.1326595E+09 0.3130541E+06 0.7235539E+03-0.3013827E+02
-0.8151443E+01 0.1660599E+06-0.2480938E+07-0.1775988E+08-0.5206528E+05-0.1213724E+03 0.4534373E+01
-0.2542905E+01-0.6648345E+05 0.3034646E+07 0.1586679E+08 0.3525523E+05 0.8129078E+02-0.3498363E+01
0MATRIX PRODUCT
9.14823582******************************************************** -217.88941028 9.41118290
4.37473541******************************************************** -136.97023123 5.90239214
2.8993018283693.81847030****************************************** -104.04316926 4.48584126
2.1839238368229.82353994****************************************** -85.41712638 3.68586551
1.7589723958025.49212912****************************************** -73.06904215 3.15542223
1.4758298650677.93240619****************************************** -64.11789527 2.77061608
1.2728496245083.34938041****************************************** -57.25629619 2.47538688
0TWICE INVERTED
0.2235633E+02-0.3573966E-02-0.7761112E-08 0.2617500E-16-0.2173495E-16-0.8217723E-13-0.3820878E+00
0.2437734E-06 0.1080515E-05-0.4880105E-12-0.9171630E-27 0.8224937E-22 0.2186027E-19 0.4890778E-14
-0.6651171E-15-0.7156508E-17-0.2767492E-14-0.8091549E-23 0.9533273E-39-0.9826732E-28-0.1001491E-22
-0.2395371E-24-0.2577364E-26-0.4863963E-36-0.9966922E-24-0.4016293E-31-0.1426094E-44-0.3606798E-32
-0.4235569E-22-0.4557372E-24-0.8600603E-34-0.1426039E-44-0.1762382E-21 0.1552953E-27 0.5619774E-36
0.1262679E-17 0.3321793E-17 0.6268837E-27 0.1039416E-37 0.5159209E-46 0.1279316E-14 0.5253888E-17
0.3376101E-07-0.1497988E-11-0.2826980E-21-0.4687326E-32-0.2326585E-40 0.8996049E-37-0.5792866E-09
1
|
Example-2-modern.out from Van
1A=2I(SQRT(1-COS(X)**2)COS(X)SIN(X)/ABS(SIN(X)))
0 I DEGREES A EXPONENTIAL(A)=B LOGARITHM(B)=C I SIN(2X)=D C-D
1. 7.5 0.2588190451 0.1295399375E+01 0.2588190451 0.2588190451 0.4E-15
2. 15.0 1.0000000000 0.2718281828E+01 1.0000000000 1.0000000000 -0.6E-15
3. 22.5 2.1213203436 0.8342144716E+01 2.1213203436 2.1213203436 0.4E-15
4. 30.0 3.4641016151 0.3194774551E+02 3.4641016151 3.4641016151 -0.4E-15
5. 37.5 4.8296291314 0.1251645325E+03 4.8296291314 4.8296291314 0.0E+00
6. 45.0 6.0000000000 0.4034287935E+03 6.0000000000 6.0000000000 0.0E+00
7. 52.5 6.7614807840 0.8639205288E+03 6.7614807840 6.7614807840 -0.9E-15
8. 60.0 6.9282032303 0.1020658443E+04 6.9282032303 6.9282032303 0.9E-15
9. 67.5 6.3639610307 0.5805413502E+03 6.3639610307 6.3639610307 0.9E-15
10. 75.0 5.0000000000 0.1484131591E+03 5.0000000000 5.0000000000 0.0E+00
11. 82.5 2.8470094961 0.1723615989E+02 2.8470094961 2.8470094961 0.0E+00
12. 90.0 -0.0000000000 0.1000000000E+01 -0.0000000000 -0.0000000000 -0.3E-16
13. 97.5 -3.3646475863 0.3457419839E-01 -3.3646475863 -3.3646475863 -0.9E-15
14. 105.0 -7.0000000000 0.9118819656E-03 -7.0000000000 -7.0000000000 0.0E+00
15. 112.5 -10.6066017178 0.2475206303E-04 -10.6066017178 -10.6066017178 0.0E+00
16. 120.0 -13.8564064606 0.9599290509E-06 -13.8564064606 -13.8564064606 0.0E+00
17. 127.5 -16.4207390469 0.7388625308E-07 -16.4207390469 -16.4207390469 0.0E+00
18. 135.0 -18.0000000000 0.1522997974E-07 -18.0000000000 -18.0000000000 0.0E+00
19. 142.5 -18.3525906995 0.1070461693E-07 -18.3525906995 -18.3525906995 0.4E-14
20. 150.0 -17.3205080757 0.3004684793E-07 -17.3205080757 -17.3205080757 0.0E+00
21. 157.5 -14.8492424049 0.3556771481E-06 -14.8492424049 -14.8492424049 -0.4E-14
22. 165.0 -11.0000000000 0.1670170079E-04 -11.0000000000 -11.0000000000 0.0E+00
23. 172.5 -5.9528380374 0.2598455530E-02 -5.9528380374 -5.9528380374 -0.8E-14
24. 180.0 0.0000000000 0.1000000000E+01 0.0000000000 -0.0000000000 0.5E-13
25. 187.5 6.4704761276 0.6457911327E+03 6.4704761276 6.4704761276 -0.2E-13
26. 195.0 13.0000000000 0.4424133920E+06 13.0000000000 13.0000000000 0.2E-14
27. 202.5 19.0918830920 0.1956588407E+09 19.0918830920 19.0918830920 0.4E-14
28. 210.0 24.2487113060 0.3396890234E+11 24.2487113060 24.2487113060 0.0E+00
29. 217.5 28.0118489624 0.1463495638E+13 28.0118489624 28.0118489624 0.4E-14
30. 225.0 30.0000000000 0.1068647458E+14 30.0000000000 30.0000000000 0.0E+00
31. 232.5 29.9437006150 0.1010145526E+14 29.9437006150 29.9437006150 0.4E-14
32. 240.0 27.7128129211 0.1085229847E+13 27.7128129211 27.7128129211 -0.4E-14
33. 247.5 23.3345237792 0.1361616844E+11 23.3345237792 23.3345237792 0.0E+00
34. 255.0 17.0000000000 0.2415495275E+08 17.0000000000 17.0000000000 0.0E+00
35. 262.5 9.0586665786 0.8592685341E+04 9.0586665786 9.0586665786 0.0E+00
36. 270.0 0.0000000000 0.1000000000E+01 0.0000000000 0.0000000000 0.1E-15
37. 277.5 -9.5763046688 0.6935275619E-04 -9.5763046688 -9.5763046688 0.0E+00
38. 285.0 -19.0000000000 0.5602796438E-08 -19.0000000000 -19.0000000000 0.0E+00
39. 292.5 -27.5771644663 0.1055333309E-11 -27.5771644663 -27.5771644663 0.0E+00
40. 300.0 -34.6410161514 0.9028130704E-15 -34.6410161514 -34.6410161514 0.0E+00
41. 307.5 -39.6029588779 0.6319074743E-17 -39.6029588779 -39.6029588779 0.0E+00
42. 315.0 -42.0000000000 0.5749522264E-18 -42.0000000000 -42.0000000000 -0.7E-14
43. 322.5 -41.5348105304 0.9155055464E-18 -41.5348105304 -41.5348105304 -0.7E-14
44. 330.0 -38.1051177665 0.2825905416E-16 -38.1051177665 -38.1051177665 0.0E+00
45. 337.5 -31.8198051534 0.1516471339E-13 -31.8198051534 -31.8198051534 0.7E-14
46. 345.0 -23.0000000000 0.1026187963E-09 -23.0000000000 -23.0000000000 0.7E-14
47. 352.5 -12.1644951198 0.5212269879E-05 -12.1644951198 -12.1644951198 0.5E-14
48. 360.0 0.0000000000 0.1000000000E+01 0.0000000000 -0.0000000000 0.4E-12
1
|
Example-2.run from Van
at mt1 v3m4/v3m4.simh.mt1
at cdr Example-2.f
at lpt Example-2.lpt
set lpt fortran
d ssb 1
b mt1
c
q
|
Example-1.f from Van
paramI9I2020
C APPENDIX E SAMPLE PROBLEM 1
C MATRIX ARITHEMTIC
DIMENSION A(7,7),VECTOR(7),B(7,7)
SENSE LIGHT 1
DO 1 I=1,7
DO 1 J=1,7
B(I,J)=1./FLOATF(I+J-1)
1 A(I,J)=B(I,J)
PRINT 13
13 FORMAT(15H1HILBERT MATRIX//)
PRINT 2,A
2 FORMAT(1X,7E14.7)
PRINT 15
15 FORMAT(8H0INVERSE//)
10 DO 6 K=1,7
VECTOR=1.
DO 3 I=2,7
3 VECTOR(I)=0.
DO 4 J=2,8
4 A(I,J)=A(I,J)/A
DO 5 I=1,55
5 A(I) =A(I+1)
DO 6 I=1,6
A(56) =A(I,I)
DO 6 J=1,7
6 A(I,J)=A(I,J+1)-A(56)*A(7,J)
PRINT 2,A
IF(SENSE LIGHT 1)11,12
11 PRINT 16
16 FORMAT(15H0MATRIX PRODUCT//)
DO 9 K=1,7
DO 8 I=1,7
VECTOR(I)=0.
DO 8 J=1,7
8 VECTOR(I)=VECTOR(I)+A(I,J)*B(J,K)
9 PRINT 18,VECTOR
18 FORMAT(1X,7F14.8)
PRINT 17
17 FORMAT(15H0TWICE INVERTED//)
GO TO 10
12 PRINT 7
7 FORMAT(1H1)
STOP 111
END
|
Example-1.lpt from Van
START OF FORTRAN COMPILATION
MACHINE SIZE SPECIFIED IS 16000
ACTUAL MACHINE SIZE IS 16000
PAGE 1
SEQ STMNT FORTRAN STATEMENT
C APPENDIX E SAMPLE PROBLEM 1
C MATRIX ARITHEMTIC
1 DIMENSION A(7,7),VECTOR(7),B(7,7)
2 SENSE LIGHT 1
3 DO 1 I=1,7
4 DO 1 J=1,7
5 B(I,J)=1./FLOATF(I+J-1)
6 1 A(I,J)=B(I,J)
7 PRINT 13
8 13 FORMAT(15H1HILBERT MATRIX//)
9 PRINT 2,A
10 2 FORMAT(1X,7E14.7)
11 PRINT 15
12 15 FORMAT(8H0INVERSE//)
13 10 DO 6 K=1,7
14 VECTOR=1.
15 DO 3 I=2,7
16 3 VECTOR(I)=0.
17 DO 4 J=2,8
18 4 A(I,J)=A(I,J)/A
19 DO 5 I=1,55
20 5 A(I) =A(I+1)
21 DO 6 I=1,6
22 A(56) =A(I,I)
23 DO 6 J=1,7
24 6 A(I,J)=A(I,J+1)-A(56)*A(7,J)
25 PRINT 2,A
26 IF(SENSE LIGHT 1)11,12
27 11 PRINT 16
28 16 FORMAT(15H0MATRIX PRODUCT//)
29 DO 9 K=1,7
30 DO 8 I=1,7
31 VECTOR(I)=0.
32 DO 8 J=1,7
33 8 VECTOR(I)=VECTOR(I)+A(I,J)*B(J,K)
34 9 PRINT 18,VECTOR
35 18 FORMAT(1X,7F14.8)
36 PRINT 17
37 17 FORMAT(15H0TWICE INVERTED//)
38 GO TO 10
39 12 PRINT 7
40 7 FORMAT(1H1)
41 STOP 111
42 END
789 INPUT CHARACTERS
MODULUS IS 20
MANTISSA IS 20
STORAGE ASSIGNMENT-ARRAYS + EQUATED VARIABLES
B 14920-15997 R2? I9G
VECTOR 14766-14919 P6F R1I
A 13688-14765 W8H P6E
STORAGE ASSIGNMENT - SIMPLE VARIABLES
J 4299 29Z
I 4319 31Z
K 4339 33Z
CONSTANTS LOCATED FROM 13622 TO 13687 W2B-W8G
STARTING ADDRESS OF STATEMENTS
SEQ STARTING ADDRESS DISPLAY
002 36U 4364 36Y
003 36Y 4368 37S
004 39/ 4391 39V
005 41U 4414 41Y
006 46/ 4461 46V
006 50/ 4501 50V
007 50V 4505 50Z
009 51W 4516 52|
011 52X 4527 53/
013 53Y 4538 54S
014 56/ 4561 56V
015 57T 4573 57X
016 59W 4596 60|
016 61W 4616 62|
017 62| 4620 62U
018 64T 4643 64X
018 68X 4687 69/
019 69/ 4691 69V
020 71U 4714 71Y
020 74S 4742 74W
021 74W 4746 75|
022 76Z 4769 77T
023 79V 4795 79Z
024 81Y 4818 82S
024 87V 4875 87Z
025 87Z 4879 88T
026 89| 4890 89U
027 90S 4902 90W
029 91T 4913 91X
030 93W 4936 94|
031 95Z 4959 96T
032 97Z 4979 98T
033 |0S 5002 |0W
033 |6W 5066 |7|
034 |7| 5070 |7U
034 |8/ 5081 |8V
036 |8V 5085 |8Z
038 |9W 5096 /0|
039 /0| 5100 /0U
041 /1/ 5111 /1V
043 /2| 5120 /2U
END OF COMPILATION
PRESS START TO GO
HILBERT MATRIX
0.1000000E 01 0.5000000E 00 0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00
0.5000000E 00 0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00
0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00 0.1111111E 00
0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00 0.1111111E 00 0.1000000E 00
0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00 0.1111111E 00 0.1000000E 00 0.9090909E-01
0.1666667E 00 0.1428571E 00 0.1250000E 00 0.1111111E 00 0.1000000E 00 0.9090909E-01 0.8333333E-01
0.1428571E 00 0.1250000E 00 0.1111111E 00 0.1000000E 00 0.9090909E-01 0.8333333E-01 0.7692308E-01
INVERSE
0.1127130E 02 0.2697477E 05-0.2552921E 07-0.1180393E 08-0.2244334E 05-0.5141136E 02 0.2419414E 01
-0.3487756E 01 0.8314032E 06-0.3636493E 08-0.1932304E 09-0.4360831E 06-0.1005926E 04 0.4292177E 02
-0.1398673E 02-0.2247596E 07 0.1141950E 09 0.5912305E 09 0.1294083E 07 0.2980953E 04-0.1293565E 03
0.1480552E 02 0.2393361E 07-0.1215343E 09-0.6292726E 09-0.1377468E 07-0.3173045E 04 0.1376856E 03
0.1151764E 02-0.6712530E 06 0.2397420E 08 0.1326595E 09 0.3130541E 06 0.7235539E 03-0.3013827E 02
-0.8151443E 01 0.1660599E 06-0.2480938E 07-0.1775988E 08-0.5206528E 05-0.1213724E 03 0.4534373E 01
-0.2542905E 01-0.6648345E 05 0.3034646E 07 0.1586679E 08 0.3525523E 05 0.8129078E 02-0.3498363E 01
MATRIX PRODUCT
X X X X X X X
4.37473541 X X X 59410.86119470 -136.97023123 5.90239214
2.8993018283693.81847030 X X 45132.18172848 -104.04316926 4.48584126
2.1839238368229.82353994 X X 37055.83795887 -85.41712638 3.68586551
1.7589723958025.49212912 X X 31701.39701141 -73.06904215 3.15542223
1.4758298650677.93240619 X X 27819.62291083 -64.11789527 2.77061608
1.2728496245083.34938041 X X 24843.74203939 -57.25629619 2.47538688
TWICE INVERTED
0.2235633E 02-0.3573966E-02-0.7761112E-08 0.2617500E-16-0.2173495E-16-0.8217723E-13-0.3820878E 00
0.2437734E-06 0.1080515E-05-0.4880105E-12-0.9171630E-27 0.8224937E-22 0.2186027E-19 0.4890778E-14
-0.6651171E-15-0.7156508E-17-0.2767492E-14-0.8091549E-23 0.9533274E-39-0.9826732E-28-0.1001491E-22
-0.2395371E-24-0.2577364E-26-0.4863963E-36-0.9966922E-24-0.4016293E-31-0.1426094E-44-0.3606798E-32
-0.4235569E-22-0.4557372E-24-0.8600603E-34-0.1426039E-44-0.1762382E-21 0.1552953E-27 0.5619774E-36
0.1262679E-17 0.3321793E-17 0.6268837E-27 0.1039416E-37 0.5159209E-46 0.1279316E-14 0.5253888E-17
0.3376101E-07-0.1497988E-11-0.2826980E-21-0.4687326E-32-0.2326585E-40 0.8996049E-37-0.5792866E-09
|
Example-1.run from Van
at mt1 v3m4/v3m4.simh.mt1
at cdr Example-1.f
at lpt Example-1.lpt
set lpt fortran
d ssb 1
b mt1
c
q
|
Example-1-new.f from Van
C APPENDIX E SAMPLE PROBLEM 1
C MATRIX ARITHEMTIC
implicit double precision(a-h,o-z)
DIMENSION A(7,7),VECTOR(7),B(7,7)
dimension a1(105)
equivalence (a,a1), (a1(50),vector), (a1(58),b)
C SENSE LIGHT 1
ifirst=1
DO 1 I=1,7
DO 1 J=1,7
c B(I,J)=1./FLOATF(I+J-1)
B(I,J)=1./dble(I+J-1)
1 A(I,J)=B(I,J)
PRINT 13
13 FORMAT(15H1HILBERT MATRIX//)
PRINT 2,A
2 FORMAT(1X,7E14.7)
PRINT 15
15 FORMAT(8H0INVERSE//)
10 DO 6 K=1,7
c VECTOR=1.
vector(1)=1.
DO 3 I=2,7
3 VECTOR(I)=0.
DO 4 J=2,8
c4 A(I,J)=A(I,J)/A
4 A(I,J)=A(I,J)/A(1,1)
DO 5 I=1,55
c5 A(I) =A(I+1)
5 a1(i) =a1(i+1)
DO 6 I=1,6
c A(56) =A(I,I)
a1(56) =a(i,i)
DO 6 J=1,7
c6 A(I,J)=A(I,J+1)-A(56)*A(7,J)
6 A(I,J)=A(I,J+1)-A1(56)*A(7,J)
PRINT 2,A
c IF(SENSE LIGHT 1)11,12
if(ifirst) 11,12,11
11 PRINT 16
16 FORMAT(15H0MATRIX PRODUCT//)
ifirst=0
DO 9 K=1,7
DO 8 I=1,7
VECTOR(I)=0.
DO 8 J=1,7
8 VECTOR(I)=VECTOR(I)+A(I,J)*B(J,K)
9 PRINT 18,VECTOR
18 FORMAT(1X,7F14.8)
PRINT 17
17 FORMAT(15H0TWICE INVERTED//)
GO TO 10
12 PRINT 7
7 FORMAT(1H1)
STOP 111
END
|
Example-1-2.lpt from Van
START OF FORTRAN COMPILATION
MACHINE SIZE SPECIFIED IS 16000
ACTUAL MACHINE SIZE IS 16000
PAGE 1
SEQ STMNT FORTRAN STATEMENT
C APPENDIX E SAMPLE PROBLEM 2
C EXERCISE LIBRARY FUNCTIONS AND PUNCH OBJECT DECK
1 PRINT 8
2 8 FORMAT(48H1A=2I(SQRT(1-COS(X)**2)COS(X)SIN(X)/ABS(SIN(X))))
3 PRINT 1
4 1 FORMAT(97H0 I DEGREES A EXPONENTIAL(A)=B
1 LOGARITHM(B)=C I SIN(2X)=D C-D//)
5 FI=1.0
6 DEGREE=7.5
7 DELTA=1.57079632679489661923/12.0
8 ARG=DELTA
9 3 A=(FI+FI)*SQRTF(1.0-COSF(ARG)**2)*COSF(ARG)
10 IF(FI-24.)7,7,6
11 6 A=-A
12 7 B=EXPF(A)
13 C=LOGF(B)
14 D=FI*SINF(ARG+ARG)
15 DIFF=C-D
16 PRINT 2,FI,DEGREE,A,B,C,D,DIFF
17 2 FORMAT(1X,F3.0,F9.1,F19.10,E19.10,2F19.10,E12.1)
18 FI=FI+1.0
19 DEGREE=DEGREE+7.5
20 ARG=ARG+DELTA
21 IF(FI-49.0)3,4,5
22 4 PRINT 9
23 9 FORMAT(1H1)
24 STOP 111
25 5 STOP 777
26 END
653 INPUT CHARACTERS
MODULUS IS 20
MANTISSA IS 20
STORAGE ASSIGNMENT-ARRAYS + EQUATED VARIABLES
NO ARRAYS
STORAGE ASSIGNMENT - SIMPLE VARIABLES
ARG 4301 30/
DEGREE 4323 32T
FI 4345 34V
DIFF 4367 36X
D 4389 38Z
C 4411 41/
B 4433 43T
A 4455 45V
DELTA 4477 47X
CONSTANTS LOCATED FROM 15909 TO 15999 I0I-I9I
STARTING ADDRESS OF STATEMENTS
SEQ STARTING ADDRESS DISPLAY
001 52W 4526 53|
003 53X 4537 54/
005 54Y 4548 55S
006 56| 4560 56U
007 57S 4572 57W
008 58Y 4588 59S
009 60| 4600 60U
010 66| 4660 66U
011 68Y 4688 69S
012 70/ 4701 70V
013 71U 4714 71Y
014 72X 4727 73/
015 74Y 4748 75S
016 76U 4764 76Y
018 77V 4775 77Z
019 79/ 4791 79V
020 80X 4807 81/
021 82T 4823 82X
022 85Z 4859 86T
024 87| 4870 87U
025 87Z 4879 88T
027 88Y 4888 89S
END OF COMPILATION
PRESS START TO GO
A=2I(SQRT(1-COS(X)**2)COS(X)SIN(X)/ABS(SIN(X)))
I DEGREES A EXPONENTIAL(A)=B LOGARITHM(B)=C I SIN(2X)=D C-D
1. 7.5 0.2588190451 0.1295399375E 01 0.2588190451 0.2588190451 0.4E-19
2. 15.0 1.0000000000 0.2718281828E 01 1.0000000000 1.0000000000 0.0E 00
3. 22.5 2.1213203436 0.8342144716E 01 2.1213203436 2.1213203436 0.0E 00
4. 30.0 3.4641016151 0.3194774551E 02 3.4641016151 3.4641016151 0.0E 00
5. 37.5 4.8296291314 0.1251645325E 03 4.8296291314 4.8296291314 0.0E 00
6. 45.0 6.0000000000 0.4034287935E 03 6.0000000000 6.0000000000 0.0E 00
7. 52.5 6.7614807840 0.8639205288E 03 6.7614807840 6.7614807840 0.0E 00
8. 60.0 6.9282032303 0.1020658443E 04 6.9282032303 6.9282032303 0.0E 00
9. 67.5 6.3639610307 0.5805413502E 03 6.3639610307 6.3639610307 0.0E 00
10. 75.0 5.0000000000 0.1484131591E 03 5.0000000000 5.0000000000 0.0E 00
11. 82.5 2.8470094961 0.1723615989E 02 2.8470094961 2.8470094961 0.0E 00
12. 90.0 0.0000000000 1.0000000000E 00 0.0000000000 0.0000000000 -0.4E-20
13. 97.5 -3.3646475863 0.3457419839E-01 -3.3646475863 -3.3646475863 0.0E 00
14. 105.0 -7.0000000000 0.9118819656E-03 -7.0000000000 -7.0000000000 0.0E 00
15. 112.5 -10.6066017178 0.2475206303E-04 -10.6066017178 -10.6066017178 0.0E 00
16. 120.0 -13.8564064606 0.9599290509E-06 -13.8564064606 -13.8564064606 0.0E 00
17. 127.5 -16.4207390469 0.7388625308E-07 -16.4207390469 -16.4207390469 0.0E 00
18. 135.0 -18.0000000000 0.1522997974E-07 -18.0000000000 -18.0000000000 0.0E 00
19. 142.5 -18.3525906995 0.1070461693E-07 -18.3525906995 -18.3525906995 0.0E 00
20. 150.0 -17.3205080757 0.3004684793E-07 -17.3205080757 -17.3205080757 0.0E 00
21. 157.5 -14.8492424049 0.3556771481E-06 -14.8492424049 -14.8492424049 0.0E 00
22. 165.0 -11.0000000000 0.1670170079E-04 -11.0000000000 -11.0000000000 0.0E 00
23. 172.5 -5.9528380374 0.2598455530E-02 -5.9528380374 -5.9528380374 0.0E 00
24. 180.0 0.0000000000 0.1000000000E 01 0.0000000000 0.0000000000 -0.3E-16
25. 187.5 6.4704761276 0.6457911327E 03 6.4704761276 6.4704761276 0.1E-18
26. 195.0 13.0000000000 0.4424133920E 06 13.0000000000 13.0000000000 0.0E 00
27. 202.5 19.0918830920 0.1956588407E 09 19.0918830920 19.0918830920 0.0E 00
28. 210.0 24.2487113060 0.3396890234E 11 24.2487113060 24.2487113060 0.0E 00
29. 217.5 28.0118489624 0.1463495638E 13 28.0118489624 28.0118489624 0.0E 00
30. 225.0 30.0000000000 0.1068647458E 14 30.0000000000 30.0000000000 0.0E 00
31. 232.5 29.9437006150 0.1010145526E 14 29.9437006150 29.9437006150 0.0E 00
32. 240.0 27.7128129211 0.1085229847E 13 27.7128129211 27.7128129211 0.0E 00
33. 247.5 23.3345237792 0.1361616844E 11 23.3345237792 23.3345237792 0.0E 00
34. 255.0 17.0000000000 0.2415495275E 08 17.0000000000 17.0000000000 0.0E 00
35. 262.5 9.0586665786 0.8592685341E 04 9.0586665786 9.0586665786 0.0E 00
36. 270.0 0.0000000000 1.0000000000E 00 0.0000000000 0.0000000000 0.4E-20
37. 277.5 -9.5763046688 0.6935275619E-04 -9.5763046688 -9.5763046688 0.0E 00
38. 285.0 -19.0000000000 0.5602796438E-08 -19.0000000000 -19.0000000000 0.0E 00
39. 292.5 -27.5771644663 0.1055333309E-11 -27.5771644663 -27.5771644663 0.0E 00
40. 300.0 -34.6410161514 0.9028130704E-15 -34.6410161514 -34.6410161514 0.0E 00
41. 307.5 -39.6029588779 0.6319074743E-17 -39.6029588779 -39.6029588779 0.0E 00
42. 315.0 -42.0000000000 0.5749522264E-18 -42.0000000000 -42.0000000000 0.0E 00
43. 322.5 -41.5348105304 0.9155055464E-18 -41.5348105304 -41.5348105304 0.0E 00
44. 330.0 -38.1051177665 0.2825905416E-16 -38.1051177665 -38.1051177665 0.0E 00
45. 337.5 -31.8198051534 0.1516471339E-13 -31.8198051534 -31.8198051534 0.0E 00
46. 345.0 -23.0000000000 0.1026187963E-09 -23.0000000000 -23.0000000000 0.0E 00
47. 352.5 -12.1644951198 0.5212269879E-05 -12.1644951198 -12.1644951198 0.0E 00
48. 360.0 0.0000000000 0.1000000000E 01 0.0000000000 0.0000000000 -0.1E-15
|
Example-2-modern.f from Van
c Appendix E Sample problem 2
c Exercise library functions and punch object deck
implicit double precision ( a-z )
c Modern names for intrinsic functions
sqrtf(x) = sqrt(x)
cosf(x) = cos(x)
expf(x) = exp(x)
logf(x) = log(x)
sinf(x) = sin(x)
print 8
8 format(48h1A=2I(SQRT(1-COS(X)**2)COS(X)SIN(X)/ABS(SIN(X))))
print 1
1 format(97h0 I DEGREES A EXPONENTIAL(A)=B
1LOGARITHM(B)=C I SIN(2X)=D C-D//)
fi=1.0
degree=7.5d0
delta=1.57079632679489661923d0/12.0
arg=delta
3 a=(fi+fi)*sqrtf(1.0-cosf(arg)**2)*cosf(arg)
if(fi-24.)7,7,6
6 a=-a
7 b=expf(a)
c=logf(b)
d=fi*sinf(arg+arg)
diff=c-d
print 2,fi,degree,a,b,c,d,diff
2 format(1x,f3.0,f9.1,f19.10,e19.10,2f19.10,e12.1)
fi=fi+1.0
degree=degree+7.5
arg=arg+delta
if(fi-49.0)3,4,5
4 print 9
9 format(1h1)
stop 111
5 stop 777
end
|